• J. Biol. Chem. · Mar 2017

    Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation.

    • Xin Meng, Yiting Wang, Xiaomeng Wang, Joe A Wrennall, Tracy L Rimington, Hongyu Li, Zhiwei Cai, Robert C Ford, and David N Sheppard.
    • From the Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom and.
    • J. Biol. Chem. 2017 Mar 3; 292 (9): 3706-3719.

    AbstractCystic fibrosis (CF) is caused by mutations that disrupt the plasma membrane expression, stability, and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Two small molecules, the CFTR corrector lumacaftor and the potentiator ivacaftor, are now used clinically to treat CF, although some studies suggest that they have counteracting effects on CFTR stability. Here, we investigated the impact of these compounds on the instability of F508del-CFTR, the most common CF mutation. To study individual CFTR Cl- channels, we performed single-channel recording, whereas to assess entire CFTR populations, we used purified CFTR proteins and macroscopic CFTR Cl- currents. At 37 °C, low temperature-rescued F508del-CFTR more rapidly lost function in cell-free membrane patches and showed altered channel gating and current flow through open channels. Compared with purified wild-type CFTR, the full-length F508del-CFTR was about 10 °C less thermostable. Lumacaftor partially stabilized purified full-length F508del-CFTR and slightly delayed deactivation of individual F508del-CFTR Cl- channels. By contrast, ivacaftor further destabilized full-length F508del-CFTR and accelerated channel deactivation. Chronic (prolonged) co-incubation of F508del-CFTR-expressing cells with lumacaftor and ivacaftor deactivated macroscopic F508del-CFTR Cl- currents. However, at the single-channel level, chronic co-incubation greatly increased F508del-CFTR channel activity and temporal stability in most, but not all, cell-free membrane patches. We conclude that chronic lumacaftor and ivacaftor co-treatment restores stability in a small subpopulation of F508del-CFTR Cl- channels but that the majority remain destabilized. A fuller understanding of these effects and the characterization of the small F508del-CFTR subpopulation might be crucial for CF therapy development.© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.