• Int. J. Radiat. Oncol. Biol. Phys. · Mar 2003

    Class solutions for conformal external beam prostate radiotherapy.

    • Vincent S Khoo, James L Bedford, Steve Webb, and David P Dearnaley.
    • Academic Unit of Radiotherapy and Oncology, Sutton, Surrey, United Kingdom. vincent.khoo@man.ac.uk
    • Int. J. Radiat. Oncol. Biol. Phys. 2003 Mar 15; 55 (4): 1109-20.

    PurposeTo determine a class solution coplanar plan from comparisons of three-field (3F), four-field (4F), and six-field (6F) plans in conformal non-intensity-modulated prostate radiotherapy.Methods And MaterialsDoses to two clinical target volumes, prostate only (PO) and prostate plus seminal vesicles (PSV) were evaluated in each of 10 patients using a variety of 3F, 4F, and 6F plans with a planning target volume margin of 10 mm. All plans were prescribed to 64 and 74 Gy. The class solution plan for each of 3F, 4F, and 6F was chosen from a variety of symmetrical and asymmetrical field arrangements that had been previously assessed. The class solution plans, 3F (0, 90, 270 degrees ), 4F (35, 90, 270, 325 degrees ), and 6F (50/lat/25) were compared with reference plans: 3F (0, 120, 240 degrees ), 4F (0, 90, 180, 270 degrees ), and 6F (55, 90, 125, 235, 270, 305 degrees ). Rectal volumes irradiated to greater than 50% (V(50)), 80% (V(80)), and 90% (V(90)) of the prescribed dose, normal tissue complication probabilities (NTCP) for rectum, bladder, and femoral heads (FH), and tumor control probabilities (TCP) were assessed. FH tolerance was set at 52 Gy to 10% volume.ResultsThe field arrangement that gave the lowest irradiated rectal volume with acceptable bladder and FH doses was a 3F (0, 90, 270 degrees ) class solution plan. This plan gave a reduction in rectal V(80) of 1.2-12.4% for the PO group and 2.3-23.8% for the PSV group compared with the other plans. The reduction in rectal V(90) was 0.2-11.9% for the PO group and 1.5-23.3% for the PSV group using the 3F (0, 90, 270 degrees ) plan. This plan provided one of the lowest rectal NTCPs, but the difference was not significant when compared with the 4F class solution plan. When target volumes with 10-mm margins remain unchanged to 74 Gy, the irradiated rectal volumes for all plans were higher and rectal NTCPs can be trebled.ConclusionThe use of appropriate beam arrangements can provide a class solution plan using only 3 fields compared with 4 or 6 fields for the parameters considered. Both 3F (0, 90, 270 degrees ) and 4F (35, 90, 270, 325 degrees ) plans can be used as a class solution plan. Other practical issues that may influence the choice of class solution include delivery time with smaller number of fields, ease of verification, the use of 10-mm multileaf collimation vs. conformal blocks, and field shape fitting limitations when using dynamic wedges.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…