• Neurobiology of aging · Aug 2012

    Testing the white matter retrogenesis hypothesis of cognitive aging.

    • Adam M Brickman, Irene B Meier, Mayuresh S Korgaonkar, Frank A Provenzano, Stuart M Grieve, Karen L Siedlecki, Ben T Wasserman, Leanne M Williams, and Molly E Zimmerman.
    • Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA. amb2139@columbia.edu
    • Neurobiol. Aging. 2012 Aug 1; 33 (8): 1699-715.

    AbstractThe retrogenesis hypothesis postulates that late-myelinated white matter fibers are most vulnerable to age- and disease-related degeneration, which in turn mediate cognitive decline. While recent evidence supports this hypothesis in the context of Alzheimer's disease, it has not been tested systematically in normal cognitive aging. In the current study, we examined the retrogenesis hypothesis in a group (n = 282) of cognitively normal individuals, ranging in age from 7 to 87 years, from the Brain Resource International Database. Participants were evaluated with a comprehensive neuropsychological battery and were imaged with diffusion tensor imaging. Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (DA), measures of white matter coherence, were computed in 2 prototypical early-myelinated fiber tracts (posterior limb of the internal capsule, cerebral peduncles) and 2 prototypical late-myelinated fiber tracts (superior longitudinal fasciculus, inferior longitudinal fasciculus) chosen to parallel previous studies; mean summary values were also computed for other early- and late-myelinated fiber tracts. We examined age-associated differences in FA, RD, and DA in the developmental trajectory (ages 7-30 years) and degenerative trajectory (ages 31-87 years), and tested whether the measures of white matter coherence mediated age-related cognitive decline in the older group. FA and DA values were greater for early-myelinated fibers than for late-myelinated fibers, and RD values were lower for early-myelinated than late-myelinated fibers. There were age-associated differences in FA, RD, and DA across early- and late-myelinated fiber tracts in the younger group, but the magnitude of differences did not vary as a function of early or late myelinating status. FA and RD in most fiber tracts showed reliable age-associated differences in the older age group, but the magnitudes were greatest for the late-myelinated tract summary measure, inferior longitudinal fasciculus (late fiber tract), and cerebral peduncles (early fiber tract). Finally, FA in the inferior longitudinal fasciculus and cerebral peduncles and RD in the cerebral peduncles mediated age-associated differences in an executive functioning factor. Taken together, the findings highlight the importance of white matter coherence in cognitive aging and provide some, but not complete, support for the white matter retrogenesis hypothesis in normal cognitive aging.Copyright © 2012 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.