• J Clin Pharmacol · Aug 2018

    Population Pharmacokinetics of Intramuscular and Intravenous Ketamine in Children.

    • Christoph P Hornik, Daniel Gonzalez, John van den Anker, Andrew M Atz, Ram Yogev, Brenda B Poindexter, Kee Chong Ng, Paula Delmore, Barrie L Harper, Chiara Melloni, Andrew Lewandowski, Casey Gelber, Michael Cohen-Wolkowiez, Jan Hau Lee, and Pediatric Trial Network Steering Committee.
    • Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
    • J Clin Pharmacol. 2018 Aug 1; 58 (8): 1092-1104.

    AbstractKetamine is an N-methyl D-aspartate receptor antagonist used off-label to facilitate dissociative anesthesia in children undergoing invasive procedures. Available for both intravenous and intramuscular administration, ketamine is commonly used when vascular access is limited. Pharmacokinetic (PK) data in children are sparse, and the bioavailability of intramuscular ketamine in children is unknown. We performed 2 prospective PK studies of ketamine in children receiving either intramuscular or intravenous ketamine and combined the data to develop a pediatric population PK model using nonlinear mixed-effects methods. We applied our model by performing dosing simulations targeting plasma concentrations previously associated with analgesia (>100 ng/mL) and anesthesia awakening (750 ng/mL). A total of 113 children (50 intramuscular and 63 intravenous ketamine) with a median age of 3.3 years (range 0.02 to 17.6 years), and median weight of 14 kg (2.4 to 176.1) contributed 275 plasma samples (149 after intramuscular, 126 after intravenous ketamine). A 2-compartment model with first-order absorption following intramuscular administration and first-order elimination described the data best. Allometrically scaled weight was included in the base model for central and peripheral volume of distribution (exponent 1) and for clearance and intercompartmental clearance (exponent 0.75). Model-estimated bioavailability of intramuscular ketamine was 41%. Dosing simulations suggest that doses of 2 mg/kg intravenously and 8 mg/kg or 6 mg/kg intramuscularly, depending on age, provide adequate sedation (plasma ketamine concentrations >750 ng/mL) for procedures lasting up to 20 minutes.© 2018, The American College of Clinical Pharmacology.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.