-
J Magn Reson Imaging · Sep 2005
The impact of partial-volume effects in dynamic susceptibility contrast magnetic resonance perfusion imaging.
- Jean J Chen, Michael R Smith, and Richard Frayne.
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada.
- J Magn Reson Imaging. 2005 Sep 1; 22 (3): 390-9.
PurposeTo demonstrate the degree of the cerebral blood flow (CBF) estimation bias that could arise from distortion of the arterial input function (AIF) as a result of partial-volume effects (PVEs) in dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI).Materials And MethodsA model of the volume fraction an artery occupies in a voxel was devised, and a mathematical relationship between the amount of PVE and the measured baseline MR signal intensity was derived. Based on this model, simulation studies were performed to assess the impact of PVE on CBF. Furthermore, the effectiveness of linear PVE compensation approaches on the concentration function was investigated.ResultsSimulation results showed a nonlinear relationship between PVE and the resulting CBF measurement error. In addition to AIF underestimation, PVE also causes distortions of AIF frequency characteristics, leading to CBF errors varying with mean transit time (MTT). An uncorrected AIF measured at a voxel with a partial-volume fraction of
ConclusionPVE can induce significant CBF estimation biases. In addition, the MTT dependence of CBF accuracy raises doubts of the validity of adopting a single cross-calibration factor (i.e., setting normal white matter to 22 mL minute(-1) (100 g)(-1)) to obtain CBF values with absolute units. The impact of PVE may be reduced by decreasing the maximum arterial signal drop in the perfusion images. To correct the AIF distortions introduced by PVE, the nonlinear relationship between the impact of PVE on MR signal intensity and contrast concentration function must be considered.(c) 2005 Wiley-Liss, Inc. Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.