-
Reprod Biol Endocrin · Mar 2020
Glucose, insulin, insulin receptor subunits α and β in normal and spontaneously diabetic and obese ob/ob and db/db infertile mouse testis and hypophysis.
- R-Marc Pelletier, Hamed Layeghkhavidaki, and María L Vitale.
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada. marc.pelletier@umontreal.ca.
- Reprod Biol Endocrin. 2020 Mar 17; 18 (1): 25.
BackgroundType 2 diabetes touches young subjects of reproductive age in epidemic proportion. This study assesses glucose, total InsulinT, Insulin2 and insulin receptor subunits α and β in testis during mouse development then, in the spontaneously type 2 diabetes models associated with infertility db/db and ob/ob mice. IR-β and α were also assessed in spermatozoa (SPZ), anterior pituitary (AP) and serum.MethodsSerum and tissue glucose were measured with enzymatic colorimetric assays and InsulinT and Insulin2 by ELISAs in serum, interstitial tissue- (ITf) and seminiferous tubule (STf) fractions in14- > 60-day-old normal and db/db, ob/ob and wild type (WT) mice. IR subunits were assessed by immunoblotting in tissues and by immunoprecipitation followed by immunoblotting in serum.ResultsDevelopment: Glucose increased in serum, ITf and STf. InsulinT and Insulin2 dropped in serum; both were higher in STf than in ITf. In > 60-day-old mouse ITf, insulinT rose whereas Insulin2 decreased; InsulinT and Insulin2 rose concurrently in STf. Glucose and insulin were high in > 60-day-old ITf; in STf high insulin2 accompanied low glucose. One hundred ten kDa IR-β peaked in 28-day-old ITf and 14-day-old STf. One hundred thirty five kDa IR-α was high in ITf but decreased in STf. Glucose escalated in db/db and ob/ob sera. Glucose doubled in ITf while being halved in STf in db/db mice. Glucose significantly dropped in db/db and ob/ob mice spermatozoa. InsulinT and Insulin2 rose significantly in the serum, ITf and STf in db/db and ob/ob mice. One hundred ten kDa IR-β and 135 kDa IR-α decreased in db/db and ob/ob ITf. Only 110 kDa IR-β dropped in db/db and ob/ob STf and AP. One hundred ten kDa IR-β fell in db/db and ob/ob SPZ. One hundred ten kDa sIR-α rose in the db/db and ob/ob mouse sera.ConclusionInsulin regulates glucose in tubules not in the interstitium. The mouse interstitium contains InsulinT and Insulin2 whereas tubules contain Insulin2. Decreased 110 kDa IR-β and 135 kDa IR-α in the db/db and ob/ob interstitial tissue suggest a loss of active receptor sites that could alter the testicular cell insulin binding and response to the hormone. Decreased IR-β levels were insufficient to stimulate downstream effectors in AP and tubules. IR-α shedding increased in db/db and ob/ob mice.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.