• European radiology · Dec 2020

    CT-based radiomics to predict the pathological grade of bladder cancer.

    • Gumuyang Zhang, Lili Xu, Lun Zhao, Li Mao, Xiuli Li, Zhengyu Jin, and Hao Sun.
    • Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing, 100730, China.
    • Eur Radiol. 2020 Dec 1; 30 (12): 6749-6756.

    ObjectiveTo build a CT-based radiomics model to predict the pathological grade of bladder cancer (BCa) preliminarily.MethodsPatients with surgically resected and pathologically confirmed BCa and who received CT urography (CTU) in our institution from October 2014 to September 2017 were retrospectively enrolled and randomly divided into training and validation groups. After feature extraction, we calculated the linear dependent coefficient between features to eliminate the collinearity. F-test was then used to identify the best features related to pathological grade. The logistic regression method was used to build the prediction model, and diagnostic performance was analyzed by plotting receiver operating characteristic (ROC) curve and calculating area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).ResultsOut of 145 included patients, 108 constituted the training group and 37 the validation group. The AUC value of the radiomics prediction model to diagnose the pathological grade of BCa was 0.950 (95% confidence interval [CI] 0.912-0.988) in the training group and 0.860 (95% CI 0.742-0.979) in the validation group, respectively. In the validation group, the diagnostic accuracy, sensitivity, specificity, PPV, and NPV were 83.8%, 88.5%, 72.7%, 88.5%, and 72.7%, respectively.ConclusionsCT-based radiomics model can differentiate high-grade from low-grade BCa with a fairly good diagnostic performance.Key Points•CT-based radiomics model can predict the pathological grade of bladder cancer. •This model has good diagnostic performance to differentiate high-grade and low-grade bladder cancer. •This preoperative and non-invasive prediction method might become an important addition to biopsy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.