• Cell Biol. Int. · Dec 2017

    Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit.

    • Haile Li, Danping Liu, Chen Li, Shanjian Zhou, Dachuan Tian, Dawei Xiao, Huan Zhang, Feng Gao, and Jianhua Huang.
    • Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, P.R. China.
    • Cell Biol. Int. 2017 Dec 1; 41 (12): 1379-1390.

    AbstractMesenchymal stem cells (MSCs)-derived exosomes exhibit protective effects on damaged or diseased tissues. Hypoxia-inducible factor 1α (HIF-1α) plays a critical role in bone development. However, HIF-1α is easily biodegradable under normoxic conditions. The bone-marrow-derived mesenchymal stem cells (BMSCs) were transfected with adenovirus carrying triple point-mutations (amino acids 402, 564, and 803) in the HIF-1α coding sequence (CDS). The mutant HIF-1α can efficiently express functional proteins under normoxic conditions. To date, no study has reported the role of exosomes secreted by mutant HIF-1α modified BMSCs in the recovery of the early steroid-induced avascular necrosis of femoral head (SANFH). In this study, we firstly analyzed exosomes derived from BMSCs modified by mutant (BMSC-ExosMU ) or wild-type HIF-1α (BMSC-ExosWT ). In vitro, we investigated the osteogenic differentiation capacity of BMSCs modified by BMSC-ExosMU or BMSC-ExosWT , and the angiogenesis effects of BMSC-ExosMU and BMSC-ExosWT on human umbilical vein endothelial cells (HUVECs). Besides, the healing of the femoral head was also assessed in vivo. We found that the potential of osteogenic differentiation of BMSCs treated with BMSC-ExosMU was higher than the wild-type group in vitro. In addition, BMSC-ExosMU stimulated the proliferation, migration, and tube formation of HUVECs in a dose-dependent manner. Compared with the BMSC-ExosWT or PBS control group, the injection of BMSC-ExosMU into the necrosis region markedly accelerated the bone regeneration and angiogenesis, which were indicated by the increased trabecular reconstruction and microvascular density. Taken together, our data suggest that BMSC-ExosMU facilitates the repair of SANFH by enhancing osteogenesis and angiogenesis.© 2017 International Federation for Cell Biology.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…