• J. Neurosci. · Oct 2017

    Memantine and Ketamine Differentially Alter NMDA Receptor Desensitization.

    • Nathan G Glasgow, Nadezhda V Povysheva, Andrea M Azofeifa, and Jon W Johnson.
    • Department of Neuroscience and Center for Neuroscience and.
    • J. Neurosci. 2017 Oct 4; 37 (40): 9686-9704.

    AbstractMemantine and ketamine are clinically useful NMDA receptor (NMDAR) open channel blockers that inhibit NMDARs with similar potency and kinetics, but display vastly different clinical profiles. This discrepancy has been hypothesized to result from inhibition by memantine and ketamine of overlapping but distinct NMDAR subpopulations. For example, memantine but not ketamine may inhibit extrasynaptic NMDARs more effectively than synaptic NMDARs. However, the basis for preferential NMDAR inhibition depending on subcellular location has not been investigated systematically. We integrated recordings from heterologously expressed single NMDAR subtypes, kinetic modeling, and recordings of synaptically evoked NMDAR responses in acute brain slices to investigate mechanisms by which channel blockers may distinguish NMDAR subpopulations. We found that memantine and ketamine differentially alter NMDAR desensitization and that memantine stabilizes a Ca2+-dependent desensitized state. As a result, inhibition by memantine of GluN1/2A receptors in tsA201 cells and of native synaptic NMDARs in cortical pyramidal neurons from mice of either sex increased in conditions that enhanced intracellular Ca2+ accumulation. Therefore, differential inhibition by memantine and ketamine based on NMDAR location is likely to result from location dependence of the intensity and duration of NMDAR activation. Modulation of Ca2+-dependent NMDAR desensitization is an unexplored mechanism of inhibitory action with the potential to endow drugs with NMDAR selectivity that leads to superior clinical profiles. Our results suggest that designing compounds to target specific receptor states, rather than specific receptor types, may be a viable strategy for future drug development.SIGNIFICANCE STATEMENT Memantine and ketamine are NMDA receptor (NMDAR) channel-blocking drugs with divergent clinical effects. Understanding mechanistically their differential actions may advance our understanding of nervous system disorders and suggest strategies for the design of more effective drugs. Here, we show that memantine and ketamine have contrasting effects on NMDAR desensitization. Ketamine binding decreases occupancy of desensitized states of the GluN1/2B NMDAR subtype. In contrast, memantine binding increases occupancy of GluN1/2A and native NMDAR desensitized states entered after accumulation of intracellular Ca2+, a novel inhibitory mechanism. These properties may contribute to inhibition of distinct NMDAR subpopulations by memantine and ketamine and help to explain their differential clinical effects. Our results suggest stabilization of Ca2+-dependent desensitized states as a new strategy for pharmaceutical neuroprotection.Copyright © 2017 the authors 0270-6474/17/379686-19$15.00/0.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…