• Plos One · Jan 2019

    Artificial intelligence enabled parabolic response surface platform identifies ultra-rapid near-universal TB drug treatment regimens comprising approved drugs.

    • Daniel L Clemens, Bai-Yu Lee, Aleidy Silva, Barbara Jane Dillon, Saša Masleša-Galić, Susana Nava, Xianting Ding, Chih-Ming Ho, and Marcus A Horwitz.
    • Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California, United States of America.
    • Plos One. 2019 Jan 1; 14 (5): e0215607.

    BackgroundShorter, more effective treatments for tuberculosis (TB) are urgently needed. While many TB drugs are available, identification of the best regimens is challenging because of the large number of possible drug-dose combinations. We have found consistently that responses of cells or whole animals to drug-dose stimulations fit a parabolic response surface (PRS), allowing us to identify and optimize the best drug combinations by testing only a small fraction of the total search space. Previously, we used PRS methodology to identify three regimens (PRS Regimens I-III) that in murine models are much more effective than the standard regimen used to treat TB. However, PRS Regimens I and II are unsuitable for treating drug-resistant TB and PRS Regimen III includes an experimental drug. Here, we use PRS methodology to identify from an expanded pool of drugs new highly effective near-universal drug regimens comprising only approved drugs.Methods And FindingsWe evaluated combinations of 15 different drugs in a human macrophage TB model and identified the most promising 4-drug combinations. We then tested 14 of these combinations in Mycobacterium tuberculosis-infected BALB/c mice and chose for PRS dose optimization and further study the two most potent regimens, designated PRS Regimens IV and V, consisting of clofazimine (CFZ), bedaquiline (BDQ), pyrazinamide (PZA), and either amoxicillin/clavulanate (AC) or delamanid (DLM), respectively. We then evaluated the efficacy in mice of optimized PRS Regimens IV and V, as well as a 3-drug regimen, PRS Regimen VI (CFZ, BDQ, and PZA), and compared their efficacy to PRS Regimen III (CFZ, BDQ, PZA, and SQ109), previously shown to reduce the time to achieve relapse-free cure in mice by 80% compared with the Standard Regimen (isoniazid, rifampicin, PZA, and ethambutol). Efficacy measurements included early bactericidal activity, time to lung sterilization, and time to relapse-free cure. PRS Regimens III-VI all rapidly sterilized the lungs and achieved relapse-free cure in 3 weeks (PRS Regimens III, V, and VI) or 5 weeks (PRS Regimen IV). In contrast, mice treated with the Standard Regimen still had high numbers of bacteria in their lungs after 6-weeks treatment and none achieved relapse-free cure in this time-period.ConclusionsWe have identified three new regimens that rapidly sterilize the lungs of mice and dramatically shorten the time required to achieve relapse-free cure. All mouse drug doses in these regimens extrapolate to doses that are readily achievable in humans. Because PRS Regimens IV and V contain only one first line drug (PZA) and exclude fluoroquinolones and aminoglycosides, they should be effective against most TB cases that are multidrug resistant (MDR-TB) and many that are extensively drug-resistant (XDR-TB). Hence, these regimens have potential to shorten dramatically the time required for treatment of both drug-sensitive and drug-resistant TB. If clinical trials confirm that these regimens dramatically shorten the time required to achieve relapse-free cure in humans, then this radically shortened treatment has the potential to improve treatment compliance, decrease the emergence of drug resistance, and decrease the healthcare burden of treating both drug-sensitive and drug-resistant TB.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.