• Invest. Ophthalmol. Vis. Sci. · Dec 2007

    Bidirectional modulation of primary visual cortex excitability: a combined tDCS and rTMS study.

    • Nicolas Lang, Hartwig R Siebner, Zoltan Chadaide, Klara Boros, Michael A Nitsche, John C Rothwell, Walter Paulus, and Andrea Antal.
    • Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany. n.lang@neurologie.uni-kiel.de
    • Invest. Ophthalmol. Vis. Sci. 2007 Dec 1; 48 (12): 5782-7.

    PurposeIn the motor cortex (M1), transcranial direct current stimulation (tDCS) can effectively prime excitability changes that are evoked by a subsequent train of repetitive transcranial magnetic stimulation (rTMS). The authors examined whether tDCS can also prime the cortical response to rTMS in the human visual cortex.MethodsIn nine healthy subjects, the authors applied tDCS (10 minutes; +/-1 mA) to the occipital cortex. After tDCS, they applied a 20-second train of 5 Hz rTMS at 90% of phosphene threshold (PT) intensity. A similar rTMS protocol had previously demonstrated a strong priming effect of tDCS on rTMS-induced excitability changes in M1. PTs were determined with single-pulse TMS before and immediately after tDCS and twice after rTMS.ResultsAnodal tDCS led to a transient decrease in PT, and subsequent 5 Hz rTMS induced an earlier return of the PT back to baseline. Cathodal tDCS produced a short-lasting increase in PT, but 5 Hz rTMS did not influence the tDCS-induced increase in PT. In a control experiment on four subjects, a 20-second train of occipital 5 Hz rTMS left the PT unchanged, whereas a 60-second train produced a similar decrease in PT as anodal tDCS alone.ConclusionsCompared with previous work on the M1, tDCS and rTMS of the visual cortex only produce short-lasting changes in cortical excitability. Moreover, the priming effects of tDCS on subsequent rTMS conditioning are relatively modest. These discrepancies point to substantial differences in the modifiability of human motor and visual cortex.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…