• Value Health · Apr 2018

    Comparative Study

    Selecting Health States for EQ-5D-3L Valuation Studies: Statistical Considerations Matter.

    • Zhihao Yang, Nan Luo, Gouke Bonsel, Jan Busschbach, and Elly Stolk.
    • Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands; Guizhou Medical University, Guiyang, Guizhou, China. Electronic address: z.yang@erasmusmc.nl.
    • Value Health. 2018 Apr 1; 21 (4): 456-461.

    BackgroundFor many countries, the three-level EuroQol five-dimensional questionnaire (EQ-5D-3L) value sets have been established to estimate health state utilities. To generate these value sets, researchers first collect values for a subset of preselected health states from a panel representing the general public, and then use a prediction algorithm to generate values for all 243 states. High prevalence of a health state in daily practice has historically been a key criterion in selecting a subset of health states as the observed set. More recently, other criteria have been suggested, especially approaches based on statistical criteria such as randomization and orthogonality.ObjectivesTo evaluate the validity and accuracy of both the earlier and newer criteria, in terms of prediction of values for all the health states and of the values of common health states in particular.MethodsWe used a pre-existing data set that contained visual analogue scale values from 126 students, each of whom valued all 243 EQ-5D-3L states. Then, we generated a series of designs and subsequently modeled the data with respect to each design. Some of these designs were used in the past; for example, the Measurement and Valuation of Health approach was included. Others were newly generated. The performance of different designs was evaluated in terms of the lowest root mean squared error for all health states taken together, and separately for common and rare states. Classification as common or rare was based on the frequency of the states' occurrence in three patient and population data sets pooled together (N = 5269).ResultsThe orthogonal design with 54 health states produced the lowest root mean squared errors. Over-representation of common health states in a design did not improve the estimations for these states. The published designs performed the worst, whereas the random selection designs were good on average. Nevertheless, the performance of the random selection designs showed more variance compared with orthogonal designs, because some of the former designs did not display appropriate balance.ConclusionsThe published designs gave rise to large estimation errors for the extrapolated EQ-5D-3L health states. The orthogonal design focusing on statistical efficiency showed its superiority. Overall, when weighing up design properties, increased statistical efficiency outweighs an increased error rate, if any, in rare health states.Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.