-
- Juliette Raffort, Cédric Adam, Marion Carrier, Ali Ballaith, Raphael Coscas, Elixène Jean-Baptiste, Réda Hassen-Khodja, Nabil Chakfé, and Fabien Lareyre.
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France; Université Côte d'Azur, CHU, Inserm U1065, C3M, Nice, France.
- J. Vasc. Surg. 2020 Jul 1; 72 (1): 321-333.e1.
ObjectiveAbdominal aortic aneurysm (AAA) is a life-threatening disease, and the only curative treatment relies on open or endovascular repair. The decision to treat relies on the evaluation of the risk of AAA growth and rupture, which can be difficult to assess in practice. Artificial intelligence (AI) has revealed new insights into the management of cardiovascular diseases, but its application in AAA has so far been poorly described. The aim of this review was to summarize the current knowledge on the potential applications of AI in patients with AAA.MethodsA comprehensive literature review was performed. The MEDLINE database was searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The search strategy used a combination of keywords and included studies using AI in patients with AAA published between May 2019 and January 2000. Two authors independently screened titles and abstracts and performed data extraction. The search of published literature identified 34 studies with distinct methodologies, aims, and study designs.ResultsAI was used in patients with AAA to improve image segmentation and for quantitative analysis and characterization of AAA morphology, geometry, and fluid dynamics. AI allowed computation of large data sets to identify patterns that may be predictive of AAA growth and rupture. Several predictive and prognostic programs were also developed to assess patients' postoperative outcomes, including mortality and complications after endovascular aneurysm repair.ConclusionsAI represents a useful tool in the interpretation and analysis of AAA imaging by enabling automatic quantitative measurements and morphologic characterization. It could be used to help surgeons in preoperative planning. AI-driven data management may lead to the development of computational programs for the prediction of AAA evolution and risk of rupture as well as postoperative outcomes. AI could also be used to better evaluate the indications and types of surgical treatment and to plan the postoperative follow-up. AI represents an attractive tool for decision-making and may facilitate development of personalized therapeutic approaches for patients with AAA.Copyright © 2019 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.