• Value Health · May 2019

    Using Machine Learning Applied to Real-World Healthcare Data for Predictive Analytics: An Applied Example in Bariatric Surgery.

    • Stephen S Johnston, John M Morton, Iftekhar Kalsekar, Eric M Ammann, Chia-Wen Hsiao, and Jenna Reps.
    • Epidemiology, Medical Devices, Johnson & Johnson, New Brunswick, NJ, USA. Electronic address: sjohn147@its.jnj.com.
    • Value Health. 2019 May 1; 22 (5): 580-586.

    ObjectivesLaparoscopic metabolic surgery (MxS) can lead to remission of type 2 diabetes (T2D); however, treatment response to MxS can be heterogeneous. Here, we demonstrate an open-source predictive analytics platform that applies machine-learning techniques to a common data model; we develop and validate a predictive model of antihyperglycemic medication cessation (validated proxy for A1c control) in patients with treated T2D who underwent MxS.MethodsWe selected patients meeting the following criteria in 2 large US healthcare claims databases (Truven Health MarketScan Commercial [CCAE]; Optum Clinformatics [Optum]): underwent MxS between January 1, 2007, to October 1, 2013 (first = index); aged ≥18 years; continuous enrollment 180 days pre-index (baseline) to 730 days postindex; baseline T2D diagnosis and treatment. The outcome was no antihyperglycemic medication treatment from 365 to 730 days after MxS. A regularized logistic regression model was trained using the following candidate predictor categories measured at baseline: demographics, conditions, medications, measurements, and procedures. A 75% to 25% split of the CCAE group was used for model training and testing; the Optum group was used for external validation.Results13 050 (CCAE) and 3477 (Optum) patients met the study inclusion criteria. Antihyperglycemic medication cessation rates were 72.9% (CCAE) and 70.8% (Optum). The model possessed good internal discriminative accuracy (area under the curve [AUC] = 0.778 [95% CI = 0.761-0.795] in CCAE test set N = 3527) and transportability (external AUC = 0.759 [95% CI = 0.741-0.777] in Optum N = 3477).ConclusionThe application of machine learning techniques to real-world healthcare data can yield useful predictive models to assist patient selection. In future practice, establishment of prerequisite technological infrastructure will be needed to implement such models for real-world decision support.Copyright © 2019 ISPOR–The Professional Society for Health Economics and Outcomes Research. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.