• J Magn Reson Imaging · Jul 2020

    Improved quantification of myelin water fraction using joint sparsity of T2 * distribution.

    • Quan Chen, Huajun She, and Yiping P Du.
    • Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
    • J Magn Reson Imaging. 2020 Jul 1; 52 (1): 146-158.

    BackgroundMyelin water fraction (MWF) can be quantified with analysis of the T2 * distribution, whereas deducing the T2 * spectrum from several echoes is an underdetermined and ill-posed problem.PurposeTo improve the quantification of myelin water content by using nonnegative jointly sparse (NNJS) optimization.Study TypeProspective.SubjectsNine healthy subjects.Field Strength/Sequence3T, multiecho gradient echo.AssessmentThe results of NNJS were compared with that of the nonnegative least square (NNLS)-based algorithms. Simulated models with varied MWF at different noise levels were used to evaluate the accuracy of estimations. In human data, the MWF values of different regions were compared with previous studies and the coefficient of variation (COV) was used to assess the spatial coherence.Statistical TestPaired t-test.ResultsIn simulation, the relative errors of MWF obtained from synthesized data with signal-to-noise ratio (SNR) at 500, 200, 150, and 100 were 0.08, 0.09, 0.10, and 0.12 for NNJS, 0.29, 0.43, 0.48, and 0.53 for regularized NNLS (rNNLS), and 0.19, 0.24, 0.25, and 0.26 for spatially-regularized NNLS (srNNLS). In human data, the mean values of MWF produced by NNJS in different regions were consistent with previous studies. Compared with the NNLS-based algorithms, lower COVs generated by NNJS were observed in genu, forceps minor, forceps major, and internal capsule, which were 0.44 ± 0.08, 0.48 ± 0.07, 0.46 ± 0.03, and 0.48 ± 0.09 in NNJS, 0.88 ± 0.28, 0.96 ± 0.18, 0.72 ± 0.03, and 0.85 ± 0.15 in rNNLS, and 0.56 ± 0.17, 0.64 ± 0.14, 0.50 ± 0.04 and 0.58 ± 0.13 in srNNLS.Data ConclusionQuantitative results of both simulated and human data show that NNJS provides more plausible estimation than the NNLS-based algorithms. Visual advantages of NNJS in spatial consistency can be confirmed by the comparative COV index. The proposed algorithm might improve the quantification of myelin water content.Level Of Evidence2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;52:146-158.© 2019 International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.