• Brain Behav. Immun. · Mar 2021

    Targeting Peroxisome Proliferator-Activated Receptor-α (PPAR- α) to reduce paclitaxel-induced peripheral neuropathy.

    • Martial Caillaud, Nipa H Patel, Alyssa White, Mackinsey Wood, Katherine M Contreras, Wisam Toma, Yasmin Alkhlaif, Jane L Roberts, Tammy H Tran, Asti B Jackson, Justin Poklis, David A Gewirtz, and M Imad Damaj.
    • Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA. Electronic address: martial.caillaud@vcuhealth.org.
    • Brain Behav. Immun. 2021 Mar 1; 93: 172-185.

    Background And PurposePaclitaxel, a widely used anti-cancer drug, is frequently associated with prolonged and severe peripheral neuropathies (PIPN), associated with neuroinflammation. Currently, PIPN effective treatments are lacking. Peroxisome Proliferator-Activated Receptor-α (PPAR-⍺) can modulate inflammatory responses. Thus, the use of PPAR-⍺ agonists, such as fibrates (fenofibrate and choline-fenofibrate), currently used in dyslipidemia treatment, could represent an interesting therapeutic approach in PIPN.Experimental ApproachOur studies tested the efficacy of fenofibrate (150 mg/kg, daily, i.p.) and choline fenofibrate (60 mg/kg daily, p.o.) in reversing and preventing the development of PIPN (paclitaxel: 8 mg/kg, i.p., every other day for 4 days) in male and female C57BL/6J mice. Mechanical and cold hypersensitivity, conditioned place preference, sensory nerve action potential (SNAP), as well as the expression of PPAR-⍺, TNF-⍺, IL-1β and IL-6 mRNA were evaluated.Key ResultsWhile fenofibrate treatment partially reversed and prevented the development of mechanical hypersensitivity, this was completely reversed and prevented by choline-fenofibrate. Both fibrates were able to completely reverse and prevent cold hypersensitivity induced by paclitaxel. The reduction of SNAP amplitude induced by paclitaxel was also reversed by both fenofibrate and choline-fenofibrate. Our results indicate that suppression of paclitaxel-induced hypersensitivity by fibrates involves the regulation of PPAR-⍺ expression and decrease neuroinflammation in DRG. Finally, the co-treatment of Paclitaxel and fenofibric acid (fibrates active metabolite) was tested on different cancer cell lines, no decrease in the antitumoral effect of paclitaxel was observed.Conclusions And ImplicationsTaken together, our results show for the first time the therapeutic potential (prevention and reversal) of fibrates in PIPN and opens to a potential pharmacological repurposing of these drugs.Copyright © 2021 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.