• Nat Rev Clin Oncol · Dec 2020

    Review

    Artificial intelligence in radiation oncology.

    • Elizabeth Huynh, Ahmed Hosny, Christian Guthier, Danielle S Bitterman, Steven F Petit, Daphne A Haas-Kogan, Benjamin Kann, Hugo J W L Aerts, and Raymond H Mak.
    • Artificial Intelligence in Medicine (AIM) Program, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
    • Nat Rev Clin Oncol. 2020 Dec 1; 17 (12): 771-781.

    AbstractArtificial intelligence (AI) has the potential to fundamentally alter the way medicine is practised. AI platforms excel in recognizing complex patterns in medical data and provide a quantitative, rather than purely qualitative, assessment of clinical conditions. Accordingly, AI could have particularly transformative applications in radiation oncology given the multifaceted and highly technical nature of this field of medicine with a heavy reliance on digital data processing and computer software. Indeed, AI has the potential to improve the accuracy, precision, efficiency and overall quality of radiation therapy for patients with cancer. In this Perspective, we first provide a general description of AI methods, followed by a high-level overview of the radiation therapy workflow with discussion of the implications that AI is likely to have on each step of this process. Finally, we describe the challenges associated with the clinical development and implementation of AI platforms in radiation oncology and provide our perspective on how these platforms might change the roles of radiotherapy medical professionals.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…