• Brain research · Feb 2013

    Gabapentin reduces allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing expression level of Nav1.7 and p-ERK1/2 in DRG neurons.

    • Jun-Long Zhang, Jan-Ping Yang, Ji-Ru Zhang, Rui-Qin Li, Jing Wang, Jin-Jin Jan, and Qing Zhuang.
    • Department of Anesthesiology, The Fourth Affiliated Hospital of Soochow University, Wuxi No. 4 People's Hospital, Wuxi 214062, People's Republic of China. zjlddqzyw@126.com
    • Brain Res. 2013 Feb 1;1493:13-8.

    AbstractIt has been confirmed that gabapentin (GBP) induced a inhibition of the voltage-gated persistent sodium current in chronically compressed dorsal root ganglion (DRG) neurons. The persistent sodium current is found in excitable DRG neurons of painful diabetic neuropathy (PDN) rats where it is mediated by tetrodotoxin (TTX) sensitive sodium channels. Recently, many groups have used models of neurological disorder to explore the mechanism of GBP in neuropathic pain. There is no evidence, however, to explain the particular mechanism of GBP, including its analgesic actions in PDN rats. These issues were addressed in the present study. Using behavioral testing, we found that diabetes leads to mechanical allodynia and thermal hyperalgesia and these effects were reversed by a continuous GBP injection. To investigate the mechanism of GBP's reduction in neural excitability, we systematically analyzed the expression of Nav1.7 and p-ERK1/2 and tested the effect of GBP on these proteins. Diabetes significantly increased the excitability of DRG neurons and the expression of Nav1.7 and p-ERK1/2, and GBP significantly inhibited these changes. These results suggest that the inhibitory effect of GBP on the expression of Nav1.7 and p-ERK1/2 might be one of the analgesic mechanisms of action of GBP. This may partially explain the antinociceptive action of GBP in the PDN rats.Copyright © 2012 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.