-
- Isabelle Lajoie, Felipe B Tancredi, and Richard D Hoge.
- Département de physiologie moléculaire et intégrative, Institut de génie biomédical, Université de Montréal, Montreal, Quebec, Canada.
- Plos One. 2016 Jan 1; 11 (9): e0163071.
AbstractThe current generation of calibrated MRI methods goes beyond simple localization of task-related responses to allow the mapping of resting-state cerebral metabolic rate of oxygen (CMRO2) in micromolar units and estimation of oxygen extraction fraction (OEF). Prior to the adoption of such techniques in neuroscience research applications, knowledge about the precision and accuracy of absolute estimates of CMRO2 and OEF is crucial and remains unexplored to this day. In this study, we addressed the question of methodological precision by assessing the regional inter-subject variance and intra-subject reproducibility of the BOLD calibration parameter M, OEF, O2 delivery and absolute CMRO2 estimates derived from a state-of-the-art calibrated BOLD technique, the QUantitative O2 (QUO2) approach. We acquired simultaneous measurements of CBF and R2* at rest and during periods of hypercapnia (HC) and hyperoxia (HO) on two separate scan sessions within 24 hours using a clinical 3 T MRI scanner. Maps of M, OEF, oxygen delivery and CMRO2, were estimated from the measured end-tidal O2, CBF0, CBFHC/HO and R2*HC/HO. Variability was assessed by computing the between-subject coefficients of variation (bwCV) and within-subject CV (wsCV) in seven ROIs. All tests GM-averaged values of CBF0, M, OEF, O2 delivery and CMRO2 were: 49.5 ± 6.4 mL/100 g/min, 4.69 ± 0.91%, 0.37 ± 0.06, 377 ± 51 μmol/100 g/min and 143 ± 34 μmol/100 g/min respectively. The variability of parameter estimates was found to be the lowest when averaged throughout all GM, with general trends toward higher CVs when averaged over smaller regions. Among the MRI measurements, the most reproducible across scans was R2*0 (wsCVGM = 0.33%) along with CBF0 (wsCVGM = 3.88%) and R2*HC (wsCVGM = 6.7%). CBFHC and R2*HO were found to have a higher intra-subject variability (wsCVGM = 22.4% and wsCVGM = 16% respectively), which is likely due to propagation of random measurement errors, especially for CBFHC due to the low contrast-to-noise ratio intrinsic to ASL. Reproducibility of the QUO2 derived estimates were computed, yielding a GM intra-subject reproducibility of 3.87% for O2 delivery, 16.8% for the M value, 13.6% for OEF and 15.2% for CMRO2. Although these results focus on the precision of the QUO2 method, rather than the accuracy, the information will be useful for calculation of statistical power in future validation studies and ultimately for research applications of the method. The higher test-retest variability for the more extensively modeled parameters (M, OEF, and CMRO2) highlights the need for further improvement of acquisition methods to reduce noise levels.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.