-
Neurobiology of disease · May 2014
Strain- and age-dependent hippocampal neuron sodium currents correlate with epilepsy severity in Dravet syndrome mice.
- Akshitkumar M Mistry, Christopher H Thompson, Alison R Miller, Carlos G Vanoye, Alfred L George, and Jennifer A Kearney.
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, USA; Department of Neurosurgery, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, USA.
- Neurobiol. Dis. 2014 May 1; 65: 1-11.
AbstractHeterozygous loss-of-function SCN1A mutations cause Dravet syndrome, an epileptic encephalopathy of infancy that exhibits variable clinical severity. We utilized a heterozygous Scn1a knockout (Scn1a(+/-)) mouse model of Dravet syndrome to investigate the basis for phenotype variability. These animals exhibit strain-dependent seizure severity and survival. Scn1a(+/-) mice on strain 129S6/SvEvTac (129.Scn1a(+/-)) have no overt phenotype and normal survival compared with Scn1a(+/-) mice bred to C57BL/6J (F1.Scn1a(+/-)) that have severe epilepsy and premature lethality. We tested the hypothesis that strain differences in sodium current (INa) density in hippocampal neurons contribute to these divergent phenotypes. Whole-cell voltage-clamp recording was performed on acutely-dissociated hippocampal neurons from postnatal days 21-24 (P21-24) 129.Scn1a(+/-) or F1.Scn1a(+/-) mice and wild-type littermates. INa density was lower in GABAergic interneurons from F1.Scn1a(+/-) mice compared to wild-type littermates, while on the 129 strain there was no difference in GABAergic interneuron INa density between 129.Scn1a(+/-) mice and wild-type littermate controls. By contrast, INa density was elevated in pyramidal neurons from both 129.Scn1a(+/-) and F1.Scn1a(+/-) mice, and was correlated with more frequent spontaneous action potential firing in these neurons, as well as more sustained firing in F1.Scn1a(+/-) neurons. We also observed age-dependent differences in pyramidal neuron INa density between wild-type and Scn1a(+/-) animals. We conclude that preserved INa density in GABAergic interneurons contributes to the milder phenotype of 129.Scn1a(+/-) mice. Furthermore, elevated INa density in excitatory pyramidal neurons at P21-24 correlates with age-dependent onset of lethality in F1.Scn1a(+/-) mice. Our findings illustrate differences in hippocampal neurons that may underlie strain- and age-dependent phenotype severity in a Dravet syndrome mouse model, and emphasize a contribution of pyramidal neuron excitability. Copyright © 2014 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.