-
- Krishnan Chakravarthy, James FitzGerald, Andrew Will, Karen Trutnau, Robert Corey, David Dinsmoor, and Leonid Litvak.
- University of California San Diego, San Diego, CA, USA.
- Neuromodulation. 2022 Jan 1; 25 (1): 758475-84.
ObjectivesSpinal cord stimulation (SCS) is a treatment for chronic neuropathic pain. Recently, SCS has been enhanced further with evoked compound action potential (ECAP) sensing. Characteristics of the ECAP, if appropriately isolated from concurrent stimulation artifact (SA), may be used to control, and aid in the programming of, SCS systems. Here, we characterize the sensitivity of the ECAP growth curve slope (S) to both neural response (|Sresp|) and SA contamination (|Sart|) for four spinal ECAP estimation methods with a novel performance measure (|Sresp/Sart|).Materials And MethodsWe collected a library of 112 ECAP and associated artifact recordings with swept stimulation amplitudes from 14 human subjects. We processed the signals to reduce SA from these recordings by applying one of three schemes: a simple high-pass (HP) filter, subtracting an artifact model (AM) consisting of decaying exponential and linear components, or applying a template correlation method consisting of a triangularly weighted sinusoid. We compared these against each other and to P2-N1, a standard method of measuring ECAP amplitude. We then fit the ECAP estimates from each method with a function representing the growth curve and calculated the Sresp and Sart parameters following the fit.ResultsAny SA reduction scheme selected may result in under- or overestimation of neural activation or misclassification of SA as ECAP. In these experiments, the ratio of neural signal preservation to SA misclassification (|Sresp/Sart|) on the ECAP estimate was superior (p < 0.05) with the HP and AM schemes relative to the others.ConclusionsThis work represents the first comprehensive assessment of spinal ECAP estimation schemes. Understanding the clinically relevant sensitivities of these schemes is increasingly important, particularly with closed-loop SCS systems using ECAP as a feedback control variable where misclassification of artifact as neural signal may lead to suboptimal therapy adjustments.Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.