-
J. Cereb. Blood Flow Metab. · Aug 2016
Comparative StudyOxygen extraction fraction measurement using quantitative susceptibility mapping: Comparison with positron emission tomography.
- Kohsuke Kudo, Tian Liu, Toshiyuki Murakami, Jonathan Goodwin, Ikuko Uwano, Fumio Yamashita, Satomi Higuchi, Yi Wang, Kuniaki Ogasawara, Akira Ogawa, and Makoto Sasaki.
- Division of Ultra-High Field MRI, Iwate Medical University, Japan Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Japan kkudo@huhp.hokudai.ac.jp.
- J. Cereb. Blood Flow Metab. 2016 Aug 1; 36 (8): 1424-33.
AbstractThe purposes of this study are to establish oxygen extraction fraction (OEF) measurements using quantitative susceptibility mapping (QSM) of magnetic resonance imaging (MRI), and to compare QSM-OEF data with the gold standard (15)O positron emission tomography (PET). Twenty-six patients with chronic unilateral internal carotid artery or middle cerebral artery stenosis or occlusion, and 15 normal subjects were included. MRI scans were conducted using a 3.0 Tesla scanner with a three-dimensional spoiled gradient recalled sequence. QSM images were created using the morphology-enabled dipole inversion method, and OEF maps were generated from QSM images using extraction of venous susceptibility induced by deoxygenated hemoglobin. Significant correlation of relative OEF ratio to contra-lateral hemisphere between QSM-OEF and PET-OEF was observed (r = 0.62, p < 0.001). The local (intra-section) correlation was also significant (r = 0.52, p < 0.001) in patients with increased PET-OEF. The sensitivity and specificity of OEF increase in QSM was 0.63 (5/8) and 0.89 (16/18), respectively, in comparison with PET. In conclusion, good correlation was achieved between QSM-OEF and PET-OEF in the identification of elevated OEF in affected hemispheres of patients with unilateral chronic steno-occlusive disease.© The Author(s) 2015.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.