• J Psychiatr Res · May 2020

    Abnormal beta and gamma frequency neural oscillations mediate auditory sensory gating deficit in schizophrenia.

    • Ann T Nguyen, William P Hetrick, Brian F O'Donnell, and Colleen A Brenner.
    • Loma Linda University, Department of Psychology, 11130 Anderson St., Loma Linda, CA 92350, USA.
    • J Psychiatr Res. 2020 May 1; 124: 13-21.

    BackgroundSensory gating is a process in which the brain's response to irrelevant and repetitive stimuli is inhibited. The sensory gating deficit in schizophrenia (SZ) is typically measured by the ratio or difference score of the P50 event-related potential (ERP) amplitudes in response to a paired click paradigm. While the P50 gating effect has usually been measured in relation to the peak amplitude of the S1 and S2 P50 ERPs, there is increasing evidence that inhibitory processes may be reflected by evoked or induced oscillatory activity during the inter-click interval in the beta (20-30 Hz) and gamma (30-50 Hz) frequency bands. We therefore examined the relationship between frequency specific activity in the inter-click interval with gating effects in the time and frequency domains.MethodPaired-auditory stimuli were presented to 131 participants with schizophrenia and 196 healthy controls (HC). P50 ERP amplitudes to S1 and S2as well as averaged- and single-trial beta (20-30 Hz) and gamma (30-50 Hz) frequency power during the inter-click interval were measured from the CZ electrode site.ResultsIn the time domain, P50 gating deficits were apparent in both ratio and difference scores. This effect was mainly due to smaller S1 amplitudes in the patient group. SZ patients exhibited less evoked beta and gamma power, particularly at the 0-100 ms time point, in response to S1. Early (0-100 ms) evoked beta and gamma responses were critical in determining the S1 amplitude and extent of P50 gating across the delay interval for both HC and SZ.ConclusionOur findings support a disruption in initial sensory registration in those with SZ, and do not support an active mechanism throughout the delay interval. The degree of response to S1 and early beta and gamma frequency oscillations in the delay interval provides information about the mechanisms supporting auditory sensory gating, and may provide a framework for studying the mechanisms that support sensory inhibition.Copyright © 2020 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.