• Artificial organs · Jan 2021

    Establishment of a novel miniature veno-venous extracorporeal membrane oxygenation model in the rat.

    • Yutaka Fujii, Hirohito Sumikura, and Daisuke Nagahama.
    • Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, Japan.
    • Artif Organs. 2021 Jan 1; 45 (1): 63-67.

    AbstractRecently, veno-venous extracorporeal membrane oxygenation (V-V ECMO) has been commonly used in the world to support patients with severe respiratory failure. However, V-V ECMO is a new technology compared to veno-arterial extracorporeal membrane oxygenation and cardiopulmonary bypass, and there are few reports of basic research. Although continuing research is desired, clinical research that standardizes conditions such as patients' background characteristics is difficult. The purpose of this study was to establish a simple and stably maintainable miniature V-V ECMO model to study the mechanisms of the biological reactions in circulation during V-V ECMO. The V-V ECMO system consisted of an original miniature membrane oxygenator, polyvinyl chloride tubing line, and roller pump. The priming volume of this system was only 8 mL. Polyethylene tubing was used to cannulate the right femoral vein as the venous return cannula for the V-V ECMO system. A 16-G cannula was passed through the right internal jugular vein and advanced into the right atrium as the conduit for venous uptake. The animals were divided into 2 groups: SHAM group and V-V ECMO group. V-V ECMO was initiated and maintained at 50-60 mL/kg/min, and oxygen was added into the oxygenator during V-V ECMO at a concentration of 100% (pump flow:oxygen = 1:10). Blood pressure was measured continuously, and blood cells were measured by blood collection. During V-V ECMO, the blood pressure and hemodilution rate were maintained around 80 mm Hg and 20%, respectively. Hb was kept at >10 g/dL, and V-V ECMO could be maintained without blood transfusion. It was possible to confirm oxygenation of and carbon dioxide removal from the blood. Likewise, the pH was adequately maintained. There were no problems with this miniature V-V ECMO system, and extracorporeal circulation progressed safely. In this study, a novel miniature V-V ECMO model was established in the rat. A miniature V-V ECMO model appears to be very useful for studying the mechanisms of the biological reactions during V-V ECMO and to perform basic studies of circulation assist devices.© 2020 International Center for Artificial Organs and Transplantation and Wiley Periodicals LLC.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…