• J. Neurosci. Methods · May 2007

    Automated optimal detection and classification of neural action potentials in extra-cellular recordings.

    • Pramodsingh H Thakur, Hanzhang Lu, Steven S Hsiao, and Kenneth O Johnson.
    • Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA.
    • J. Neurosci. Methods. 2007 May 15; 162 (1-2): 364-76.

    AbstractDetermination of single unit spikes from multiunit spike trains plays a critical role in neurophysiological coding studies which require information about the precise timing of events underlying the neural codes that are the basis of behavior. Searching for optimal spike detection strategies has therefore been the focus of many studies over the past two decades. In this study we describe and implement an algorithm for the optimal real time detection and classification of neural spikes. The algorithm consists of three steps: noise analysis, template generation and real time detection and classification. The first step involves estimating the background noise statistics. In this step, a "cap-fitting" algorithm is used to automatically detect a spike free segment and then the mean, standard deviation and autocorrelation function of the noise are computed. The second step involves generating optimal templates of the spikes from a segment containing both noise and multiunit activity. In this step, a generalized matched filter is used to isolate a set of preliminary spikes from the noise. The first principal component of previously recorded templates is used as the deterministic signal. The preliminary spikes are then clustered in a sub-space spanned by the first three principal components to form new templates. The third step uses these templates for the real time spike detection and classification. In this step the incoming data are projected into a lower dimensional space that is designed to maximally separate the signal from the noise energy. This algorithm provides an accurate estimate of the signal to noise ratio and provides an accurate estimate of spike times and spike shapes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.