• J. Neurol. Sci. · Sep 2016

    Xenon-delayed postconditioning attenuates spinal cord ischemia/reperfusion injury through activation AKT and ERK signaling pathways in rats.

    • Shiyao Liu, Yanwei Yang, Mu Jin, Siyu Hou, Xiuhua Dong, Jiakai Lu, and Weiping Cheng.
    • Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, China; Peking University People's Hospital, China. Electronic address: 943762880@qq.com.
    • J. Neurol. Sci. 2016 Sep 15; 368: 277-84.

    AbstractPrevious studies have shown that xenon-delayed postconditioning for up to 2h after reperfusion provides protection against spinal cord ischemia/reperfusion (I/R) injury in rats. This study was designed to determine the roles of phosphatidylinositol 3-kinase (PI3K)-Akt and extracellular signal-regulated kinase (ERK) in this neuroprotection. The rats were randomly assigned to the following nine groups (n=16∗9): 1) I/R+N2 group, 2) I/R+Xe group, 3) I/R+PD98059+N2 group (ERK blocking agent), 4) I/R+wortmannin+N2 group (PI3K-Akt blocking agent), 5) I/R+PD98059+Xe group, 6) I/R+wortmannin+Xe group, 7) I/R+DMSO+Xe group (dimethyl sulfoxide, vehicle control), 8) I/R+DMSO+N2 group, and 9) sham group (no spinal cord ischemia and no xenon). Spinal cord ischemia was induced for 25min in male Sprague-Dawley rats. Neurological function was assessed using the Basso, Beattie, and Bresnahan (BBB) open-field locomotor scale at 6, 12, 24 and 48h after reperfusion. Histological examination of the lumbar spinal cord was performed using Nissl staining and TUNEL staining at 4 (n=8) and 48 (n=8)h after reperfusion. Western blotting was performed to evaluate p-Akt and p-ERK expression in the spinal cord at 4 (n=8) and 48 (n=8) h after reperfusion. Compared with the sham group, all rats in the I/R groups had lower BBB scores, fewer normal motor neurons, more apoptotic neurons and lower p-Akt and p-ERK levels at each time point (P<0.05). Compared with the I/R group, rats in the I/R+Xe group had higher neurological scores, more normal motor neurons, fewer apoptotic neurons and significantly higher levels of p-Akt and p-ERK at each time point (P<0.05). Compared with the I/R+Xe group, the I/R+PD98059+Xe and I/R+wortmannin+Xe groups showed worse neurological outcomes and less p-Akt and p-ERK at each time point (P<0.05). These results suggest that xenon-delayed postconditioning improves neurological outcomes to spinal cord I/R injury in rats through the activation of the AKT and ERK signaling pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.