-
- A H Noel-Storr, G Dooley, S Wisniewski, J Glanville, J Thomas, S Cox, R Featherstone, and R Foxlee.
- Radcliffe Department of Medicine, Cochrane Dementia and Cognitive Improvement Group, Oxford University, Oxford, UK. Electronic address: anna.noel-storr@rdm.ox.ac.uk.
- J Clin Epidemiol. 2020 Nov 1; 127: 142-150.
Background And ObjectivesThe Cochrane Central Register of Controlled Trials (CENTRAL) is compiled from a number of sources, including PubMed and Embase. Since 2017, we have increased the number of sources feeding into CENTRAL and improved the efficiency of our processes through the use of application programming interfaces, machine learning, and crowdsourcing.Our objectives were twofold: (1) Assess the effectiveness of Cochrane's centralized search and screening processes to correctly identify references to published reports which are eligible for inclusion in Cochrane systematic reviews of randomized controlled trials (RCTs). (2) Identify opportunities to improve the performance of Cochrane's centralized search and screening processes to identify references to eligible trials.MethodsWe identified all references to RCTs (either published journal articles or trial registration records) with a publication or registration date between 1st January 2017 and 31st December 2018 that had been included in a Cochrane intervention review. We then viewed an audit trail for each included reference to determine if it had been identified by our centralized search process and subsequently added to CENTRAL.ResultsWe identified 650 references to included studies with a publication year of 2017 or 2018. Of those, 634 (97.5%) had been captured by Cochrane's Centralised Search Service. Sixteen references had been missed by the Cochrane's Centralised Search Service: six had PubMed-not-MEDLINE status, four were missed by the centralized Embase search, three had been misclassified by Cochrane Crowd, one was from a journal not indexed in MEDLINE or Embase, one had only been added to Embase in 2019, and one reference had been rejected by the automated RCT machine learning classifier. Of the sixteen missed references, eight were the main or only publication to the trial in the review in which it had been included.ConclusionThis analysis has shown that Cochrane's centralized search and screening processes are highly sensitive. It has also helped us to understand better why some references to eligible RCTs have been missed. The CSS is playing a critical role in helping to populate CENTRAL and is moving us toward making CENTRAL a comprehensive repository of RCTs.Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.