-
- Corrado Lanera, Paola Berchialla, Abhinav Sharma, Clara Minto, Dario Gregori, and Ileana Baldi.
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Loredan, 18, 35131, Padova, Italy.
- Syst Rev. 2019 Dec 6; 8 (1): 317.
BackgroundThe growing number of medical literature and textual data in online repositories led to an exponential increase in the workload of researchers involved in citation screening for systematic reviews. This work aims to combine machine learning techniques and data preprocessing for class imbalance to identify the outperforming strategy to screen articles in PubMed for inclusion in systematic reviews.MethodsWe trained four binary text classifiers (support vector machines, k-nearest neighbor, random forest, and elastic-net regularized generalized linear models) in combination with four techniques for class imbalance: random undersampling and oversampling with 50:50 and 35:65 positive to negative class ratios and none as a benchmark. We used textual data of 14 systematic reviews as case studies. Difference between cross-validated area under the receiver operating characteristic curve (AUC-ROC) for machine learning techniques with and without preprocessing (delta AUC) was estimated within each systematic review, separately for each classifier. Meta-analytic fixed-effect models were used to pool delta AUCs separately by classifier and strategy.ResultsCross-validated AUC-ROC for machine learning techniques (excluding k-nearest neighbor) without preprocessing was prevalently above 90%. Except for k-nearest neighbor, machine learning techniques achieved the best improvement in conjunction with random oversampling 50:50 and random undersampling 35:65.ConclusionsResampling techniques slightly improved the performance of the investigated machine learning techniques. From a computational perspective, random undersampling 35:65 may be preferred.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.