• Magn Reson Med · Jul 2005

    Comparative Study

    Analysis and compensation of eddy currents in balanced SSFP.

    • O Bieri, M Markl, and K Scheffler.
    • MR Physics, Department of Medical Radiology, University of Basel, Basel, Switzerland. oliver.bieri@unibas.ch
    • Magn Reson Med. 2005 Jul 1; 54 (1): 129-37.

    AbstractBalanced steady-state free precession (SSFP) completely compensates for all gradients within each repetition time (TR), and is thus very sensitive to any magnetic field imperfection that disturbs the perfectly balanced acquisition scheme. It is demonstrated that balanced SSFP is especially sensitive to changing eddy currents that are induced by stepwise changing phase-encoding (PE) gradients. In contrast to the linear k-space trajectory, which has small variations between consecutive encoding steps, other encoding schemes (e.g., centric, random, or segmented orderings) exhibit significant jumps in k-space between adjacent PE steps, and consequently induce rapidly changing eddy currents. The resulting disturbances induce significant image artifacts, such that compensation strategies are essential when nonlinear PE schemes are applied. Although direct annihilation of the induced eddy currents by additional, opposing magnetic fields has been investigated, it is limited by uncertainty regarding the time evolution of induced eddy currents. A generic (and thus system-unrelated) compensation strategy is proposed that consists of "pairing" of consecutive PE steps. Another approach is based on partial dephasing along the slice direction that annihilates eddy-current-induced signal oscillations. Both pairing of the PE steps and "through-slice equilibration" are easy to implement and allow the use of arbitrary k-space trajectories for balanced SSFP.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…