• Ann. N. Y. Acad. Sci. · Jan 2005

    Review

    Progress toward the genetic treatment of the beta-thalassemias.

    • Michel Sadelain, Leszek Lisowski, Selda Samakoglu, Stefano Rivella, Chad May, and Isabelle Riviere.
    • Gene Transfer and Gene Expression Laboratory, Memorial Sloan-Kettering Cancer Center, Box 182, 1275 York Ave., New York, NY 10021, USA. m-sadelain@ski.mskcc.org
    • Ann. N. Y. Acad. Sci. 2005 Jan 1; 1054: 78-91.

    AbstractThe beta-thalassemias are congenital anemias that are caused by mutations that reduce or abolish expression of the beta-globin gene. They can be cured by allogeneic hematopoietic stem cell (HSC) transplantation, but this therapeutic option is not available to most patients. The transfer of a regulated beta-globin gene in autologous HSCs is a highly attractive alternative treatment. This strategy, which is simple in principle, raises major challenges in terms of controlling expression of the globin transgene, which ideally should be erythroid specific, differentiation- and stage-restricted, elevated, position independent, and sustained over time. Using lentiviral vectors, May et al. demonstrated in 2000 that an optimized combination of proximal and distal transcriptional control elements permits lineage-specific and elevated beta-globin expression, resulting in therapeutic hemoglobin production and correction of anemia in beta-thalassemic mice. Several groups have by now replicated and extended these findings to various mouse models of severe hemoglobinopathies, thus fueling enthusiasm for a potential treatment of beta-thalassemia based on globin gene transfer. Current investigation focuses on safety issues and the need for improved vector production methodologies. The safe implementation of stem cell-based gene therapy requires the prevention of the formation of replication-competent viral genomes and minimization of the risk of insertional oncogenesis. Importantly, globin vectors, in which transcriptional activity is highly restricted, have a lesser risk of activating oncogenes in hematopoietic progenitors than non-tissue-specific vectors, by virtue of their late-stage erythroid specificity. As such, they provide a general paradigm for improving vector safety in stem cell-based gene therapy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.