• Magn Reson Med · Oct 2005

    Comparative Study

    New insights into the mechanisms of signal formation in RF-spoiled gradient echo sequences.

    • Vincent Denolin, Céline Azizieh, and Thierry Metens.
    • Unité de Résonance Magnétique, Imagerie Médicale, Hôpital Erasme, Université Libre de Bruxelles, Belgium. vdenolin@ulb.ac.be
    • Magn Reson Med. 2005 Oct 1; 54 (4): 937-54.

    AbstractRF spoiling is a well established method to produce T(1)-weighted images with short repetition-time gradient-echo sequences, by eliminating coherent transverse magnetization with appropriate RF phase modulation. This paper presents 2 novel approaches to describe signal formation in such sequences. Both methods rely on the formulation of RF spoiling as a linear increase of the precession angle between RF pulses, which is an alternative to the commonly used quadratic pulse phase scheme. The first technique demonstrates that a steady state signal can be obtained by integrating over all precession angles within the voxel, in spite of the lack of a genuine steady-state for separate isochromats. This clear mathematical framework allows a straightforward incorporation of off-resonance effects and detector phase settings. Moreover, it naturally introduces the need for a large net gradient area per repetition interval. In the second step, a modified partition method including RF spoiling is developed to obtain explicit expressions for all signal components. This provides a physical interpretation of the deviations from ideal spoiling behavior in FLASH and echo-shifted sequences. The results of the partition method in the small flip angle regime are compared with numerical simulations based on a Fourier decomposition of magnetization states. Measurements performed with in vitro solutions were in good agreement with numerical simulations at short relaxation times (T(1)/TR = 32 and T(2)/TR = 4); larger deviations occurred at long relaxation times (T(1)/TR = 114 and T(2)/TR = 82).Copyright 2005 Wiley-Liss, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…