-
Comparative Study
Modulation of cytotoxicity and cellular pharmacology of 1,2-diaminocyclohexane platinum (IV) complexes mediated by axial and equatorial ligands.
- Y Kido, A R Khokhar, S al-Baker, and Z H Siddik.
- Department of Clinical Investigations, University of Texas M. D. Anderson Cancer Center, Houston 77030.
- Cancer Res. 1993 Oct 1; 53 (19): 4567-72.
AbstractIsomers (R,R-, S,S-, and cis-) of 1,2-diaminocyclohexane (DACH) platinum(IV) complexes with selected axial and equatorial ligands were synthesized and evaluated for in vitro antitumor activity, cellular uptake, and total DNA-Pt adducts. L1210 cells, sensitive to cis-diamminedichloroplatinum(II) (CDDP) and tetraplatin (L1210/0), 160-fold resistant to CDDP [L1210/diamminedichloroplatinum (DDP)], or 70-fold resistant to tetraplatin (L1210/DACH), were used in conjunction with compounds having the general structure DACH-Pt(IV)-X2Y2, where X and Y are axial and equatorial ligands and X2Y2 are specifically Cl2Cl2,Ac2Cl2, (TFA)2Cl2, (OH)2Cl2, and Cl2CBDCA (Cl, chloro; Ac, acetato; TFA, trifluoroacetato; OH, hydroxo; CBDCA, 1,1-cyclobutanedicarboxylato). Comparison of cytotoxicities between isomers of Cl2Cl2,Ac2Cl2, or Cl2CBDCA indicated that R,R-isomers were the most effective against all three cell lines. The relatively lower activity of the S,S- and cis-isomers was cell line dependent: against L1210/DACH, both isomers of Cl2Cl2 were only 2- to 3-fold less effective, and this contrasted with 7- and 26-fold lower cytotoxicities, respectively, against L1210/DDP. Cross-resistance factors in the L1210/DDP and L1210/DACH lines depended on both isomeric form and the nature of axial or equatorial ligand. The L1210/DDP cells were 6- to 9-fold cross-resistant to the R,R-isomer, 8- to 15-fold to S,S-isomer, and 13- to 38-fold to cis-isomer. The L1210/DACH line was only 4- to 7-fold cross-resistant to the three isomers of Ac2Cl2 but cross-resistance to the isomers was 47- to 79-fold for Cl2Cl2 and 22- to 56-fold for Cl2CBDCA complexes. Compared with CDDP, accumulation (2 h at 100 microM drug concentration) of Ac2Cl2 in the three L1210 cell lines was 26-50%, while uptake of Cl2Cl2 and (TFA)2Cl2 was 100-170% and 320-570%, respectively. The greatest DNA binding was seen with Cl2Cl2 in all cell lines, followed by (TFA)2Cl2, CDDP, and Ac2Cl2. DNA binding correlated directly with potency (1/concentration producing 50% inhibition) in the L1210/0 model (r = 0.973, P < 0.016) but not in the L1210/DDP and L1210/DACH models. Accumulation and DNA-binding studies indicated that binding efficiency to DNA was: Cl2Cl2 > Ac2Cl2 > CDDP > (TFA)2Cl2. In a nonreducing environment, the Pt(IV) complexes (20 microM) did not react with salmon sperm DNA. Reduced glutathione (100 microM), as a reducing agent, rendered full binding capacity to Cl2Cl2; binding was 25-30% of the expected maximum for (TFA)2Cl2, while Ac2Cl2 remained inert.(ABSTRACT TRUNCATED AT 400 WORDS)
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.