-
- H N Kha, B K Chen, G M Clark, and R Jones.
- Department of Mechanical Engineering, Monash University, 900 Dandenong Road, Caulfield East, Melbourne, Victoria 3145, Australia. hung.kha@eng.monsah.edu.au
- Med Eng Phys. 2004 Oct 1; 26 (8): 677-85.
AbstractTrauma and damage during insertion of electrode arrays into the human cochlea are strongly related to the stiffness of the array. The stiffness properties of electrode arrays, which were determined by three-point flexural bending and buckling tests, are reported in this paper. To date there has been limited publication on mechanical properties of these electrode arrays. Previous studies mainly focused on characterizing the stiffness of the tip of the Nucleus straight array with little emphasis on characterizing the stiffness of its whole length. In this study, stiffnesses of the Nucleus straight and contour electrode arrays have been determined along their length. Young's modulus of elasticity of the Nucleus straight array has been found to increase from the tip (182 MPa) to the rear end (491 MPa), whereas the stiffness of the contour array is greatest near the tip (480 MPa) and is fairly uniform in the middle and rear sections of the electrode array (380-400 MPa). Buckling experiments have shown that the contour array has much higher critical buckling load (about four times) than the Nucleus straight array. The results from three-point flexural bending and buckling experiments provide significant data for the development of electrode arrays, from which new array designs with improved flexibility can be developed. The results of stiffness properties are also important input for use in finite element models to predict the trajectories during insertion and to help evaluate the effects of different electrode array designs on damage sustained during insertion.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.