• Radiology · May 2005

    Neonatal brain: regional variability of in vivo MR imaging relaxation rates at 3.0 T--initial experience.

    • Lori-Anne Williams, Neil Gelman, Paul A Picot, David S Lee, James R Ewing, Victor K Han, and R Terry Thompson.
    • Imaging Division, Lawson Health Research Institute, London, Ontario, Canada. lwilliams@lri.sjhc.london.on.ca
    • Radiology. 2005 May 1; 235 (2): 595-603.

    PurposeTo retrospectively investigate regional in vivo magnetic resonance (MR) imaging transverse and longitudinal relaxation rates at 3.0 T in neonatal brain, the relationship between these rates, and their potential use for gray matter (GM) versus white matter (WM) tissue discrimination.Materials And MethodsInformed parental consent for performance of imaging procedures was obtained in each infant. Informed consent for retrospective image analysis was not required; ethics approval was obtained from institutional review board. At 3.0 T, R1 and R2 were measured in brain regions (frontal WM, posterior WM, periventricular WM, frontal GM, posterior GM, basal ganglia, and thalamus) in 13 infants with suspected neurologic abnormality (two term, 11 preterm). Maps of R1 and R2 were acquired with T1 by multiple readout pulses and segmented spin-echo echo-planar imaging sequences, respectively. Accuracy of R1 and R2 map acquisition methods was tested in phantoms by comparing them with inversion-recovery and spin-echo sequences, respectively. Statistical analysis included linear regression analysis to determine relationship between R1 and R2 and Wilcoxon signed rank test to investigate the potential for discrimination between GM and WM.ResultsIn phantoms, R1 values measured with T1 by multiple readout pulses sequence were 3%-8% lower than those measured with inversion recovery sequence, and R2 values measured with segmented echo-planar sequence were 1%-8% lower than those measured with spin-echo sequence. A strong correlation of 0.944 (P < .001) between R1 and R2 in neonatal brain was observed. For R2, relative differences between GM and WM were larger than were those for R1 (z = -2.366, P < .05). For frontal GM and frontal WM, (R2(GM) - R2(WM))/R2(WM) yielded 0.8 +/- 0.2 (mean +/- standard deviation) and (R1(GM) - R1(WM))/R1(WM) yielded 0.3 +/- 0.09.ConclusionResults at 3.0 T indicate that R1 decreases with increasing field strength, while R2 values are similar to those reported at lower field strengths. For neonates, R2 image contrast may be more advantageous than R1 image contrast for differentiation between GM and WM.(c) RSNA, 2005.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.