• Plos One · Jan 2019

    Multicenter Study Comparative Study

    Comparison of quality control methods for automated diffusion tensor imaging analysis pipelines.

    • Seyyed M H Haddad, Christopher J M Scott, Miracle Ozzoude, Melissa F Holmes, Stephen R Arnott, Nuwan D Nanayakkara, Joel Ramirez, Sandra E Black, Dar Dowlatshahi, Stephen C Strother, Richard H Swartz, Sean Symons, Manuel Montero-Odasso, ONDRI Investigators, and Robert Bartha.
    • Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
    • Plos One. 2019 Jan 1; 14 (12): e0226715.

    AbstractThe processing of brain diffusion tensor imaging (DTI) data for large cohort studies requires fully automatic pipelines to perform quality control (QC) and artifact/outlier removal procedures on the raw DTI data prior to calculation of diffusion parameters. In this study, three automatic DTI processing pipelines, each complying with the general ENIGMA framework, were designed by uniquely combining multiple image processing software tools. Different QC procedures based on the RESTORE algorithm, the DTIPrep protocol, and a combination of both methods were compared using simulated ground truth and artifact containing DTI datasets modeling eddy current induced distortions, various levels of motion artifacts, and thermal noise. Variability was also examined in 20 DTI datasets acquired in subjects with vascular cognitive impairment (VCI) from the multi-site Ontario Neurodegenerative Disease Research Initiative (ONDRI). The mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated in global brain grey matter (GM) and white matter (WM) regions. For the simulated DTI datasets, the measure used to evaluate the performance of the pipelines was the normalized difference between the mean DTI metrics measured in GM and WM regions and the corresponding ground truth DTI value. The performance of the proposed pipelines was very similar, particularly in FA measurements. However, the pipeline based on the RESTORE algorithm was the most accurate when analyzing the artifact containing DTI datasets. The pipeline that combined the DTIPrep protocol and the RESTORE algorithm produced the lowest standard deviation in FA measurements in normal appearing WM across subjects. We concluded that this pipeline was the most robust and is preferred for automated analysis of multisite brain DTI data.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…