• Kardiol Pol · Jan 2012

    Comparative Study

    Value of rotational angiography (3D-ATG) with contrast agent administration into the right atrium during atrial fibrillation ablation procedures: a preliminary report.

    • Artur Baszko, Magdalena Lanocha, Piotr Kałmucki, Marek Michalski, Olga Jerzykowska, Waldemar Elikowski, Anna Kociemba, Małgorzata Pyda, Tomasz Siminiak, and Andrzej Szyszka.
    • 2nd Department of Cardiology, HCP Medical Centre, Poznan University of Medical Sciences, Poznan, Poland. abaszko@wp.pl
    • Kardiol Pol. 2012 Jan 1; 70 (9): 924-30.

    BackgroundEfficacy and safety of radiofrequency (RF) ablation in patients with atrial fibrillation (AF) strongly depend on the possibility of three-dimensional (3D) visualisation of atria as well as the ostia of pulmonary veins. Current angiographic systems allow 3D visualisation of anatomical heart structures using rotational angiography.AimTo evaluate clinical usefulness of rotational angiography (3D-ATG) after contrast agent administration into the right atrium for the purpose of evaluating left atrial anatomy in patients undergoing RF ablation of AF.MethodsWe also compared images obtained using 3D-ATG with magnetic resonance imaging (MRI). In 18 consecutive patients undergoing RF ablation of AF or left-atrial tachycardia, 3D-ATG was performed uneventfully, followed by 3D reconstruction of the left atrium and the aorta. Ablation using the CARTO 3 system was successful in 17 patients. Total ablation time was 127 ± 28 min, fluoroscopy time 31 ± 8 min, and radiation dose was 413 ± 170 mGy. Mean fluoroscopy time for 3D-ATG was 1.75 ± 0.4 min and the mean radiation dose was 159 ± 57 mGy. Appropriate 3D visualisation of the left atrium was possible in 17 patients, including 16 patients in whom all 4 pulmonary venous ostia were imaged. In 1 patient, all right-sided pulmonary veins were located outside the scan area. In 1 case, 3D-ATG did not allow visualisation of the right inferior pulmonary vein, and in another case the left-sided veins had a common ostium as shown in MRI but not visualised in 3D-ATG.ResultsPulmonary vein diameter assessed by 3D-ATG was slightly higher than by MRI (16.6 ± 3.2 vs. 15.2 ± 3.6 mm, p = 0.28), although this was mainly related to a single nonvisualised right inferior pulmonary vein. Good agreement (< 2 mm) between the two methods for the assessment of pulmonary venous ostia was higher for the right-sided than the left-sided veins (62.5% vs. 44%, p = 0.03).ConclusionsWe conclude that 3D-ATG after contrast agent administration into the right atrium seems to be a safe and effective method to visualise pulmonary venous ostia and left atrial anatomy. It remains to be established whether it enables evaluation of anatomical anomalies.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…