• Magn Reson Med · May 2020

    Self-calibrated interpolation of non-Cartesian data with GRAPPA in parallel imaging.

    • Seng-Wei Chieh, Mostafa Kaveh, Mehmet Akçakaya, and Steen Moeller.
    • Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota.
    • Magn Reson Med. 2020 May 1; 83 (5): 1837-1850.

    PurposeTo develop a non-Cartesian k-space reconstruction method using self-calibrated region-specific interpolation kernels for highly accelerated acquisitions.MethodsIn conventional non-Cartesian GRAPPA with through-time GRAPPA (TT-GRAPPA), the use of region-specific interpolation kernels has demonstrated improved reconstruction quality in dynamic imaging for highly accelerated acquisitions. However, TT-GRAPPA requires the acquisition of a large number of separate calibration scans. To reduce the overall imaging time, we propose Self-calibrated Interpolation of Non-Cartesian data with GRAPPA (SING) to self-calibrate region-specific interpolation kernels from dynamic undersampled measurements. The SING method synthesizes calibration data to adapt to the distinct shape of each region-specific interpolation kernel geometry, and uses a novel local k-space regularization through an extension of TT-GRAPPA. This calibration approach is used to reconstruct non-Cartesian images at high acceleration rates while mitigating noise amplification. The reconstruction quality of SING is compared with conjugate-gradient SENSE and TT-GRAPPA in numerical phantoms and in vivo cine data sets.ResultsIn both numerical phantom and in vivo cine data sets, SING offers visually and quantitatively similar reconstruction quality to TT-GRAPPA, and provides improved reconstruction quality over conjugate-gradient SENSE. Furthermore, temporal fidelity in SING and TT-GRAPPA is similar for the same acceleration rates. G-factor evaluation over the heart shows that SING and TT-GRAPPA provide similar noise amplification at moderate and high rates.ConclusionThe proposed SING reconstruction enables significant improvement of acquisition efficiency for calibration data, while matching the reconstruction performance of TT-GRAPPA.© 2019 International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.