• Magn Reson Med · Jun 2020

    Bio-SCOPE: fast biexponential T1ρ mapping of the brain using signal-compensated low-rank plus sparse matrix decomposition.

    • Yanjie Zhu, Yuanyuan Liu, Leslie Ying, Xin Liu, Hairong Zheng, and Dong Liang.
    • Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
    • Magn Reson Med. 2020 Jun 1; 83 (6): 2092-2106.

    PurposeTo develop and evaluate a fast imaging method based on signal-compensated low-rank plus sparse matrix decomposition to accelerate data acquisition for biexponential brain T1ρ mapping (Bio-SCOPE).MethodsTwo novel strategies were proposed to improve reconstruction performance. A variable-rate undersampling scheme was used with a varied acceleration factor for each k-space along the spin-lock time direction, and a modified nonlinear thresholding scheme combined with a feature descriptor was used for Bio-SCOPE reconstruction. In vivo brain T1ρ mappings were acquired from 4 volunteers. The fully sampled k-space data acquired from 3 volunteers were retrospectively undersampled by net acceleration rates (R) of 4.6 and 6.1. Reference values were obtained from the fully sampled data. The agreement between the accelerated T1ρ measurements and reference values was assessed with Bland-Altman analyses. Prospectively undersampled data with R = 4.6 and R = 6.1 were acquired from 1 volunteer.ResultsT1ρ -weighted images were successfully reconstructed using Bio-SCOPE for R = 4.6 and 6.1 with signal-to-noise ratio variations <1 dB and normalized root mean square errors <4%. Accelerated and reference T1ρ measurements were in good agreement for R = 4.6 (T1ρ s : 18.6651 ± 1.7786 ms; T1ρ l : 88.9603 ± 1.7331 ms) and R = 6.1 (T1ρ s : 17.8403 ± 3.3302 ms; T1ρ l : 88.0275 ± 4.9606 ms) in the Bland-Altman analyses. T1ρ parameter maps from prospectively undersampled data also show reasonable image quality using the Bio-SCOPE method.ConclusionBio-SCOPE achieves a high net acceleration rate for biexponential T1ρ mapping and improves reconstruction quality by using a variable-rate undersampling data acquisition scheme and a modified soft-thresholding algorithm in image reconstruction.© 2019 International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.