• J. Vasc. Surg. · Oct 2013

    Comparative Study

    Differentiating transmural from transanastomotic prosthetic graft endothelialization through an isolation loop-graft model.

    • Timothy Pennel, Peter Zilla, and Deon Bezuidenhout.
    • Christian Barnard Department of Cardiothoracic Surgery, Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa.
    • J. Vasc. Surg. 2013 Oct 1; 58 (4): 1053-61.

    BackgroundIn humans, transanastomotic endothelial outgrowth onto the surface of prosthetic vascular grafts is limited to the immediate perianastomotic region, even after years of implantation. In contrast, continual transanastomotic outgrowth together with short graft lengths has led to early endothelial confluence in most animal models pre-empting endothelialization through transmural capillary sprouting. We describe an isolation loop-graft model that clearly separates these distinctly different events.MethodsBaseline transanastomotic endothelialization was assessed by implanting low-porosity expanded polytetrafluoroethylene grafts (ePTFE; internal diameter 1.7 mm; internodal distance 15-25 μm; 14.2 ± 1.6 mm long) for 2, 4, and 6 weeks (n = 6/time point) in the abdominal aorta of Wistar rats. High-porosity polyurethane (internal diameter 1.7 mm-150 μm pore size) grafts were then interposed ("welded") into the midsection of the ePTFE grafts for 2, 4, 6, and 8 weeks (n = 6/time point). Looping the interposition grafts increased their length to 70.3 ± 8.3 mm. After implantation periods of 6, 8, 12, and 24 weeks (n = 8/time point) isolation loop grafts were analyzed by light, immune-fluorescence (CD31) and scanning electron microscopy, and endothelialization was expressed as maximal transanastomotic endothelial outgrowth (I(max)), mean transanastomotic outgrowth (I(mean)), and segmental graft coverage (GSE).ResultsTransanastomotic outgrowth slowed down between 2 and 6 weeks of implantation (proximal: [I(max) from 0.9 ± 0.5 to 0.3 ± 0.3 mm/wk; P < .04; I(mean) from 0.3 ± 0.1 to 0.2 ± 0.1 mm/wk; nonsignificant (NS)]; distal: [I(max) from 0.7 ± 0.3 to 0.3 ± 0.2 mm/wk; P < .02; I(mean) from 0.3 ± 0.2 to 0.2 ± 0.0 mm/wk; NS]) but remained constant thereafter (I(max) = 0.5 ± 0.2 mm/wk; I(mean) = 0.4 ± 0.2 mm/wk at 24 weeks NS). In straight composite grafts, the ePTFE separation zones were too short to isolate transmural ingrowth beyond week 4. In contrast, a broad endothelial-free separation zone was preserved in all looped composite grafts even after half a year of implantation (25.9 ± 5.9 vs 8.7 ± 4.9 mm proximally and 21.9 ± 13.4 vs 12.3 ± 6.2 mm distally at 6 and 24 weeks, respectively). Ninety-three percent of patent loop-grafts showed isolated transmural midgraft endothelium after 4 weeks and 97% after 6 weeks. Midgraft preconfluence was reached by 6 weeks (GSE = 55 ± 45%) and confluence between week 12 and 24 (GSE = 95.0 ± 10.0% and 84.0 ± 30.13%). The subintimal thickness stayed constant with a nonsignificant trend toward regression (91.8 ± 93.9 mm vs 71.4 ± 59.4 mm at 6 and 24 weeks, respectively; NS).ConclusionsTransmural endothelialization can be clearly distinguished from transanastomotic outgrowth in a high throughput rat model. A looped interposition graft model provides sufficient isolation length to separate the two events for up to half a year and does not result in an increase in intimal hyperplasia.Clinical RelevanceAlthough the mode of graft deployment has changed over the years, the problem of an absent surface endothelium remains, whether small- to medium-diameter grafts are surgically implanted or placed endovascularly as “covered stents.” In contrast to humans, most animal models experience progressive transanastomotic endothelial outgrowth. Together with graft lengths that were too short, the clinically irrelevant transanastomotic endothelialization inadvertently led to early endothelial confluence in the vast majority of experimental vascular graft studies pre-empting or concealing alternative modes of endothelialization. The isolation loop-graft model we propose allows the long-term differentiation of the different modes of endothelialization in a small animal screening model.Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.