• Int Arch Occup Environ Health · Oct 2001

    Biomonitoring of exposure to nitrous oxide, sevoflurane, isoflurane and halothane by automated GC/MS headspace urinalysis.

    • A Accorsi, A Barbieri, G B Raffi, and F S Violante.
    • Laboratorio di Tossicologia, Igiene e Medicina del Lavoro, Università degli Studi di Bologna, Italy. accorsi@orsola-malpighi.med.unibo.it
    • Int Arch Occup Environ Health. 2001 Oct 1; 74 (8): 541-8.

    ObjectivesThe goal of the present study was to develop an automated method to assess by biological monitoring, the volatile-anaesthetic exposure (nitrous oxide, sevoflurane, isoflurane and halothane) in operating theatre personnel.MethodsPost-shift urine samples were analysed by gas chromatography-mass spectrometry coupled with static headspace sampling (GC-MS/ HSS); intra-assay %-RSD (n= 10) was less than 5% for nitrous oxide and less than 7% for each halogenated vapour. The biomonitoring method was validated with air monitoring data, obtained by personal samplers and a similar GC-MS method. The sensitivity achieved by single ion monitoring (SIM) was sufficient to reveal low biological and environmental exposure averages down to 1 microg/l(urine) and 0.5 ppm for nitrous oxide and 0.1 microg/l(urine) and 50 ppb for halogenated compounds, respectively.ResultsIn 1998 we collected and analysed 714 post-shift urine samples for the biological monitoring of volatile anaesthetics in the urine of the operating-theatre personnel of Sant'Orsola-Malpighi Hospital (Bologna, Italy). Our data showed that nitrous oxide (N20), the anaesthetic most largely used in general anaesthesia, is still the decisive factor in operating-theatre pollution. Moreover, on the basis of our results, working in close contact with anaesthetics seems to be the main determinant of risk: surgical nurses and anaesthesiologists are the most-exposed professional categories (mean post-shift urinary N2O approximately 65 microg/l(urine)) while general theatre staff, surgeons, and auxiliary personnel have significantly lower exposure.ConclusionsThe biological monitoring of post-shift unmodified urinary volatile anaesthetics was confirmed to be a useful tool for evaluating individual exposure to these chemicals. The urinary concentrations of N2O and of halogenated vapours might reflect, to a certain extent, the external exposure to these compounds, and respiratory air-monitoring data support the validity of biological monitoring. Furthermore, the good relationship between air and urinary concentration of anaesthetics in people working in closer contact with these chemicals may be a good indirect means of revealing the bad air conditions of operating rooms, and may contribute to the highlighting and correction of service defects in anaesthesiology equipment and of human errors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.