• Eur. J. Nucl. Med. Mol. Imaging · Dec 2020

    Deep learning detection of prostate cancer recurrence with 18F-FACBC (fluciclovine, Axumin®) positron emission tomography.

    • Jong Jin Lee, Hongye Yang, Benjamin L Franc, Andrei Iagaru, and Guido A Davidzon.
    • Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, 300 Pasteur Dr, Stanford, CA, 94305, USA.
    • Eur. J. Nucl. Med. Mol. Imaging. 2020 Dec 1; 47 (13): 2992-2997.

    PurposeTo evaluate the performance of deep learning (DL) classifiers in discriminating normal and abnormal 18F-FACBC (fluciclovine, Axumin®) PET scans based on the presence of tumor recurrence and/or metastases in patients with prostate cancer (PC) and biochemical recurrence (BCR).MethodsA total of 251 consecutive 18F-fluciclovine PET scans were acquired between September 2017 and June 2019 in 233 PC patients with BCR (18 patients had 2 scans). PET images were labeled as normal or abnormal using clinical reports as the ground truth. Convolutional neural network (CNN) models were trained using two different architectures, a 2D-CNN (ResNet-50) using single slices (slice-based approach) and the same 2D-CNN and a 3D-CNN (ResNet-14) using a hundred slices per PET image (case-based approach). Models' performances were evaluated on independent test datasets.ResultsFor the 2D-CNN slice-based approach, 6800 and 536 slices were used for training and test datasets, respectively. The sensitivity and specificity of this model were 90.7% and 95.1%, and the area under the curve (AUC) of receiver operating characteristic curve was 0.971 (p < 0.001). For the case-based approaches using both 2D-CNN and 3D-CNN architectures, a training dataset of 100 images and a test dataset of 28 images were randomly allocated. The sensitivity, specificity, and AUC to discriminate abnormal images by the 2D-CNN and 3D-CNN case-based approaches were 85.7%, 71.4%, and 0.750 (p = 0.013) and 71.4%, 71.4%, and 0.699 (p = 0.053), respectively.ConclusionDL accurately classifies abnormal 18F-fluciclovine PET images of the pelvis in patients with BCR of PC. A DL classifier using single slice prediction had superior performance over case-based prediction.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.