-
- Fatma A Madouh and K T Ramesh.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Ann Biomed Eng. 2019 Sep 1; 47 (9): 1960-1970.
AbstractWe examine the influence of shear anisotropy of brain tissue on the potential for mild traumatic brain injury. First we develop a new constitutive description for the white matter in the brain that can capture the anisotropic behavior of the white matter in both tension and shear. The material parameters for the models are determined using a set of three experiments already published in the literature. The calibrated and parameterized model is then implemented in a computational (finite element) model of the head. This computational model is two-dimensional and is used to simulate a previously published injury-causing event in the National Hockey League, using axonal strain as criterion to assess the level of diffuse axonal injury. It is demonstrated that the inclusion of shear anisotropy affects both the nature and the extent of predicted injury. Further, the locations of the predicted injury are more consistent with observations in the literature.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.