• Clin Trials · Oct 2020

    A comparison of phase I dose-finding designs in clinical trials with monotonicity assumption violation.

    • Rachid Abbas, Caroline Rossoni, Thomas Jaki, Xavier Paoletti, and Pavel Mozgunov.
    • ONCOSTAT Team CESP INSERM U1018, Univ. Paris-Saclay and Biostatistics and Epidemiology department, Gustave Roussy Cancer Center, Villejuif, France.
    • Clin Trials. 2020 Oct 1; 17 (5): 522-534.

    Background/AimsIn oncology, new combined treatments make it difficult to order dose levels according to monotonically increasing toxicity. New flexible dose-finding designs that take into account uncertainty in dose levels ordering were compared with classical designs through simulations in the setting of the monotonicity assumption violation. We give recommendations for the choice of dose-finding design.MethodsMotivated by a clinical trial for patients with high-risk neuroblastoma, we considered designs that require a monotonicity assumption, the Bayesian Continual Reassessment Method, the modified Toxicity Probability Interval, the Bayesian Optimal Interval design, and designs that relax monotonicity assumption, the Bayesian Partial Ordering Continual Reassessment Method and the No Monotonicity Assumption design. We considered 15 scenarios including monotonic and non-monotonic dose-toxicity relationships among six dose levels.ResultsThe No Monotonicity Assumption and Partial Ordering Continual Reassessment Method designs were robust to the violation of the monotonicity assumption. Under non-monotonic scenarios, the No Monotonicity Assumption design selected the correct dose level more often than alternative methods on average. Under the majority of monotonic scenarios, the Partial Ordering Continual Reassessment Method selected the correct dose level more often than the No Monotonicity Assumption design. Other designs were impacted by the violation of the monotonicity assumption with a proportion of correct selections below 20% in most scenarios. Under monotonic scenarios, the highest proportions of correct selections were achieved using the Continual Reassessment Method and the Bayesian Optimal Interval design (between 52.8% and 73.1%). The costs of relaxing the monotonicity assumption by the No Monotonicity Assumption design and Partial Ordering Continual Reassessment Method were decreases in the proportions of correct selections under monotonic scenarios ranging from 5.3% to 20.7% and from 1.4% to 16.1%, respectively, compared with the best performing design and were higher proportions of patients allocated to toxic dose levels during the trial.ConclusionsInnovative oncology treatments may no longer follow monotonic dose levels ordering which makes standard phase I methods fail. In such a setting, appropriate designs, as the No Monotonicity Assumption or Partial Ordering Continual Reassessment Method designs, should be used to safely determine recommended for phase II dose.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…