• Magn Reson Med · Feb 2009

    Broadband slab selection with B1+ mitigation at 7T via parallel spectral-spatial excitation.

    • Kawin Setsompop, Vijayanand Alagappan, Borjan A Gagoski, Andreas Potthast, Franz Hebrank, Ulrich Fontius, Franz Schmitt, L L Wald, and E Adalsteinsson.
    • Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachustts 02139, USA. kawin@mit.edu
    • Magn Reson Med. 2009 Feb 1; 61 (2): 493-500.

    AbstractChemical shift imaging benefits from signal-to-noise ratio (SNR) and chemical shift dispersion increases at stronger main field such as 7 Tesla, but the associated shorter radiofrequency (RF) wavelengths encountered require B1+ mitigation over both the spatial field of view (FOV) and a specified spectral bandwidth. The bandwidth constraint presents a challenge for previously proposed spatially tailored B1+ mitigation methods, which are based on a type of echovolumnar trajectory referred to as "spokes" or "fast-kz". Although such pulses, in conjunction with parallel excitation methodology, can efficiently mitigate large B1+ inhomogeneities and achieve relatively short pulse durations with slice-selective excitations, they exhibit a narrow-band off-resonance response and may not be suitable for applications that require B1+ mitigation over a large spectral bandwidth. This work outlines a design method for a general parallel spectral-spatial excitation that achieves a target-error minimization simultaneously over a bandwidth of frequencies and a specified spatial-domain. The technique is demonstrated for slab-selective excitation with in-plane B1+ mitigation over a 600-Hz bandwidth. The pulse design method is validated in a water phantom at 7T using an eight-channel transmit array system. The results show significant increases in the pulse's spectral bandwidth, with no additional pulse duration penalty and only a minor tradeoff in spatial B1+ mitigation compared to the standard spoke-based parallel RF design.Copyright 2009 Wiley-Liss, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.