• Qual Life Res · Mar 2016

    Comparative Study

    Symptom clusters in women with breast cancer: an analysis of data from social media and a research study.

    • Sarah A Marshall, Christopher C Yang, Qing Ping, Mengnan Zhao, Nancy E Avis, and Edward H Ip.
    • Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
    • Qual Life Res. 2016 Mar 1; 25 (3): 547-57.

    PurposeUser-generated content on social media sites, such as health-related online forums, offers researchers a tantalizing amount of information, but concerns regarding scientific application of such data remain. This paper compares and contrasts symptom cluster patterns derived from messages on a breast cancer forum with those from a symptom checklist completed by breast cancer survivors participating in a research study.MethodsOver 50,000 messages generated by 12,991 users of the breast cancer forum on MedHelp.org were transformed into a standard form and examined for the co-occurrence of 25 symptoms. The k-medoid clustering method was used to determine appropriate placement of symptoms within clusters. Findings were compared with a similar analysis of a symptom checklist administered to 653 breast cancer survivors participating in a research study.ResultsThe following clusters were identified using forum data: menopausal/psychological, pain/fatigue, gastrointestinal, and miscellaneous. Study data generated the clusters: menopausal, pain, fatigue/sleep/gastrointestinal, psychological, and increased weight/appetite. Although the clusters are somewhat different, many symptoms that clustered together in the social media analysis remained together in the analysis of the study participants. Density of connections between symptoms, as reflected by rates of co-occurrence and similarity, was higher in the study data.ConclusionsThe copious amount of data generated by social media outlets can augment findings from traditional data sources. When different sources of information are combined, areas of overlap and discrepancy can be detected, perhaps giving researchers a more accurate picture of reality. However, data derived from social media must be used carefully and with understanding of its limitations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…