-
J Magn Reson Imaging · Sep 2016
In vivo imaging of the spectral line broadening of the human lung in a single breathhold.
- Flavio Carinci, Cord Meyer, Felix A Breuer, and Peter M Jakob.
- Research Center Magnetic Resonance Bavaria (MRB), Würzburg, Germany.
- J Magn Reson Imaging. 2016 Sep 1; 44 (3): 745-57.
PurposeTo present a technique, which allows for the in vivo quantification of the spectral line broadening of the human lung in a single breathhold. The line broadening is an interesting parameter of the lung because it can provide information about important lung properties, namely: inflation and oxygen uptake. The proposed technique integrates the asymmetric spin-echo (ASE) approach, which is commonly used to quantify the line broadening, with a single shot turbo spin-echo pulse sequence with half-Fourier acquisition (HASTE), to reduce the acquisition times.Materials And MethodsImaging experiments were performed at 1.5 Tesla on 14 healthy volunteers, using a ASE-prepared HASTE sequence. The line broadening was quantified using a two-points method. Data were acquired at different breathing states: functional residual capacity (FRC) and total lung capacity (TLC), and with different breathing gases: room-air and pure-oxygen. Image acquisition was accomplished within a single breathhold of approximately 15 s duration. The violation of the Carr-Purcell-Meiboom-Gill conditions, deriving from inhomogeneities of the static magnetic field, was overcome by means of radiofrequency-phase cycling and generalized autocalibrating partially parallel acquisitions (GRAPPA) reconstruction.ResultsSignificant increase of the line broadening was observed with both lung inflation and oxygen concentration (P < 0.0001). Values of the line broadening obtained within the lung parenchyma at different breathing states (1.48 ± 0.29 ppm at FRC and 1.95 ± 0.43 ppm at TLC) are in agreement with previous reports and show excellent reproducibility, with a coefficient of variation <0.03. The mean relative difference observed with oxygen-enhancement was approximately 14%.ConclusionThe presented technique offers a robust way to quantify the spectral line broadening of the human lung in vivo. Image acquisition can be accomplished in a single breathhold, which could be suitable for clinical applications on patients with lung diseases. J. Magn. Reson. Imaging 2016;44:745-757.© 2016 International Society for Magnetic Resonance in Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.