-
Expert Opin Ther Pat · Sep 2017
ReviewTargeted nanotechnologies for cancer intervention: a patent review (2010-2016).
- Priyamvada Pradeep, Pradeep Kumar, Yahya E Choonara, and Viness Pillay.
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences , University of the Witwatersrand , Johannesburg , South Africa.
- Expert Opin Ther Pat. 2017 Sep 1; 27 (9): 1005-1019.
IntroductionIn recent years, several active targeting nanostrategies have been patented for application in cancer theranostics. The versatility of nanostructures in terms of composition, manufacturability, functionalization, and matrix formation make them ideal for carrying large dose of bioactive contents, high density of targeting ligands on their surface, efficient delivery to the site of interest, and capable of forming multicomponent platforms. Areas covered: The patents were classified into polymeric and non-polymeric nanostructures and their applicability in addressing the targeting paradigm related to cancer intervention was explored. Specialized platforms such as nanoparticles, nanomicelles, nanocomposites, nanotubes, quantum dots, metal/silica particles, and dendrimers were cited as targeted nanostructures along with ligands such as antibody fragments, synthetic peptides, aptamers, small molecules, and folates. Here, we focused on patented targeted nanotechnological advances in recent years (2010-2016). Expert opinion: The formulation and performance prerequisites, available nanomaterial options, fabrication feasibility, and challenges and issues related with regulatory approval and patenting of cancer targeted nanocarriers are reviewed. Future research in this area should focus on clinically relevant bioactive combinations, better metastasis control, integration of imaging and theranostic techniques, predictive animal/pre-clinical models, maximal utilisation of extra- and intracellular tumor microenvironment for drug delivery, and exploring the metabolomic-, proteomic-, and genomic-based personalization of cancer nanomedicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.