• Anesthesiology · Dec 2015

    Comparative Study

    Comparative Effectiveness of Calabadion and Sugammadex to Reverse Non-depolarizing Neuromuscular-blocking Agents.

    • Friederike Haerter, Jeroen Cedric Peter Simons, Urs Foerster, Ingrid Moreno Duarte, Daniel Diaz-Gil, Shweta Ganapati, Katharina Eikermann-Haerter, Cenk Ayata, Ben Zhang, Manfred Blobner, Lyle Isaacs, and Matthias Eikermann.
    • From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (F.H., J.C.P.S., I.M.D., D.D.-G., M.E.); Clinic of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany (U.F., M.B.); Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland (S.G., B.Z., L.I.); Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (K.E.-H., C.A.); and Department of Anesthesia and Critical Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany (M.E.).
    • Anesthesiology. 2015 Dec 1;123(6):1337-49.

    BackgroundThe authors evaluated the comparative effectiveness of calabadion 2 to reverse non-depolarizing neuromuscular-blocking agents (NMBAs) by binding and inactivation.MethodsThe dose-response relationship of drugs to reverse vecuronium-, rocuronium-, and cisatracurium-induced neuromuscular block (NMB) was evaluated in vitro (competition binding assays and urine analysis), ex vivo (n = 34; phrenic nerve hemidiaphragm preparation), and in vivo (n = 108; quadriceps femoris muscle of the rat). Cumulative dose-response curves of calabadions, neostigmine, or sugammadex were created ex vivo at a steady-state deep NMB. In living rats, the authors studied the dose-response relationship of the test drugs to reverse deep block under physiologic conditions, and they measured the amount of calabadion 2 excreted in the urine.ResultsIn vitro experiments showed that calabadion 2 binds rocuronium with 89 times the affinity of sugammadex (Ka = 3.4 × 10 M and Ka = 3.8 × 10 M-). The results of urine analysis (proton nuclear magnetic resonance), competition binding assays, and ex vivo study obtained in the absence of metabolic deactivation are in accordance with an 1:1 binding ratio of sugammadex and calabadion 2 toward rocuronium. In living rats, calabadion 2 dose-dependently and rapidly reversed all NMBAs tested. The molar potency of calabadion 2 to reverse vecuronium and rocuronium was higher compared with that of sugammadex. Calabadion 2 was eliminated renally and did not affect blood pressure or heart rate.ConclusionsCalabadion 2 reverses NMB induced by benzylisoquinolines and steroidal NMBAs in rats more effectively, i.e., faster than sugammadex. Calabadion 2 is eliminated in the urine and well tolerated in rats.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    This article appears in the collections: Neuromuscular myths: the lies we tell ourselves and What are Calabadions? Can they replace sugammadex?.

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.