• Heart · Apr 2000

    Hibernating myocardium: morphological correlates of inotropic stimulation and glucose uptake.

    • D Pagano, J N Townend, D V Parums, R S Bonser, and P G Camici.
    • Cardiothoracic Surgical Unit, Queen Elizabeth Hospital, Birmingham, UK.
    • Heart. 2000 Apr 1; 83 (4): 456-61.

    BackgroundIn patients with postischaemic left ventricular dysfunction, segments recovering function after revascularisation (hibernating myocardium) may not respond during dobutamine echocardiography, despite preserved [(18)F] 2-fluoro-2-deoxy-D-glucose (FDG) uptake at positron emission tomography.ObjectiveTo investigate whether this lack of response might reflect the degree of ultrastructural change in hibernating myocardium.MethodsTransmural biopsies were obtained from 22 dysfunctional segments in 22 patients during coronary artery bypass grafting and examined by light and electron microscopy. Wall motion scores and coronary vasodilator reserve were assessed before and after coronary artery bypass grafting (CABG).ResultsMean (SD) wall motion score improved in all segments following CABG (from 2.24 (0.4) to 1.55 (0.4); p < 0.0001), confirming hibernating myocardium. In these segments myocardial blood flow (positron emission tomography with H(2)(15)O) before CABG was similar to that in normal volunteers (1.02 (0.24) v 1.02 (0.23) ml/min/g), while the coronary vasodilator reserve was blunted (1.26 (0.7) v 3.2 (1.6); p < 0.0001). Myocardial blood flow was unchanged after CABG, whereas coronary vasodilator reserve increased to 2.10 (0.90) (p < 0.0007). In hibernating myocardium myofibrillar loss, interstitial fibrosis, and glycogen-rich myocytes were more marked than in control donor hearts. On the basis of the response to dobutamine before CABG, two functional groups were identified: group A, segments with inotropic reserve (n = 15); group B, segments without inotropic reserve (n = 7). FDG uptake was similar in group A and group B (0.40 (0.1) v 0.44 (0.1) micromol/min/g). In group B there was more myofibrillar loss (26 (8)% v 11 (5)%; p = 0.0009) and glycogen-rich myocytes (28 (11)% v 17 (10)%; p = 0.02), whereas interstitial fibrosis, myocardial blood flow, and coronary vasodilator reserve were similar in the two groups. Myofibrillar loss was the only independent predictor of inotropic reserve (p = 0.01).ConclusionsHibernating myocardium is characterised by a reduced coronary vasodilator reserve which improves on revascularisation and shows a spectrum of ultrastructural changes that influence the response to dobutamine, while FDG uptake is invariably preserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.