• Experimental physiology · Dec 2016

    Quantifying cerebrovascular reactivity in anterior and posterior cerebral circulations during voluntary breath holding.

    • Christina D Bruce, Craig D Steinback, Uday V Chauhan, Jamie R Pfoh, Maria Abrosimova, Emily R Vanden Berg, Rachel J Skow, Margie H Davenport, and Trevor A Day.
    • Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada.
    • Exp. Physiol. 2016 Dec 1; 101 (12): 1517-1527.

    New FindingsWhat is the central question of this study? We developed and validated a 'stimulus index' (SI; ratio of end-tidal partial pressures of CO2 and O2 ) method to quantify cerebrovascular reactivity (CVR) in anterior and posterior cerebral circulations during breath holding. We aimed to determine whether the magnitude of CVR is correlated with breath-hold duration. What is the main finding and its importance? Using the SI method and transcranial Doppler ultrasound, we found that the magnitude of CVR of the anterior and posterior cerebral circulations is not positively correlated with physiological or psychological break-point during end-inspiratory breath holding. Our study expands the ability to quantify CVR during breath holding and elucidates factors that affect break-point. The central respiratory chemoreflex contributes to blood gas homeostasis, particularly in response to accumulation of brainstem CO2 . Cerebrovascular reactivity (CVR) affects chemoreceptor stimulation inversely through CO2 washout from brainstem tissue. Voluntary breath holding imposes alterations in blood gases, eliciting respiratory chemoreflexes, potentially contributing to breath-hold duration (i.e. break-point). However, the effects of cerebrovascular reactivity on break-point have yet to be determined. We tested the hypothesis that the magnitude of CVR contributes directly to breath-hold duration in 23 healthy human participants. We developed and validated a cerebrovascular stimulus index methodology [SI; ratio of end-tidal partial pressures of CO2 and O2 (P ET ,CO2/P ET ,O2)] to quantify CVR by correlating measured and interpolated values of P ET ,CO2 (r = 0.95, P < 0.0001), P ET ,O2 (r = 0.98, P < 0.0001) and SI (r = 0.94, P < 0.0001) during rebreathing. Using transcranial Doppler ultrasound, we then quantified the CVR of the middle (MCAv) and posterior (PCAv) cerebral arteries by plotting cerebral blood velocity against interpolated SI during a maximal end-inspiratory breath hold. The MCAv CVR magnitude was larger than PCAv (P = 0.001; +70%) during breath holding. We then correlated MCAv and PCAv CVR with the physiological (involuntary diaphragmatic contractions) and psychological (end-point) break-point, within individuals. There were significant inverse but modest relationships between both MCAv and PCAv CVR and both physiological and psychological break-points (r < -0.53, P < 0.03). However, these relationships were absent when MCAv and PCAv cerebrovascular conductance reactivity was correlated with both physiological and psychological break-points (r > -0.42; P > 0.06). Although central chemoreceptor activation is likely to be contributing to break-point, our data suggest that CVR-mediated CO2 washout from central chemoreceptors plays no role in determining break-point, probably because of a reduced arterial-to-tissue CO2 gradient during breath holding.© 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.